PRODUCTION OF ENVIRONMENTALLY FRIENDLY BIODIESEL BY ENZYMATIC OIL TRANSESTERIFICATION / NEŽALINGO APLINKAI BIODYZELINO GAMYBOS FERMENTINIO ALIEJAUS PERESTERINIMO BŪDU OPTIMIZAVIMO TYRIMAS / ПОЛУЧЕНИЕ ЭКОЛОГИЧНОГО БИОДИЗЕЛЯ ПУТЕМ ФЕРМЕНТАТИВНОЙ ПЕРЕЭТЕРИФИКАЦИИ МАСЛА

Author(s):  
Vida Bendikienė ◽  
Vita Kiriliauskaitė ◽  
Benediktas Juodka

In this study, the ability of commercial lipolytic enzyme Lipoprime 50T to catalyze the biotechnologically and environmentally important processes of rapeseed oil hydrolysis and transesterification were investigated and the optimal process conditions were determined using simple and accurate thin layer chromatographic, titrimetric and computer analysis (Micro image 4.0) methods. Lipoprime 50T lipase-catalyzed transesterification of rapeseed oil with several alcohols for fatty acid alkyl esters (biodiesel) production in n-hexane – a common solvent for lipolytic reactions – and in t-butanol – a novel promising solvent for biodiesel production – was investigated. The effects of molar ratio of substrates, reaction temperature and time on the constitution of the methanolysis reaction mixture were analyzed. Lipoprime 50T lipase-catalyzed rapeseed oil methanolysis in n-hexane was determined to be undesirably slow and inefficient process, whereas the lipolytic potential of the studied enzyme was determined to be very high in t-butanol (no rapeseed oil left after 1.5 h from the beginning of the reaction under determined optimal reaction conditions). Santrauka Tirta komercinio preparato Lipoprime 50T, kuriam būdingas lipolizinis aktyvumas, geba katalizuoti biotechnologiniu ir aplinkos apsaugos požiūriu svarbias rapsų aliejaus peresterinimo bei hidrolizes reakcijas. Optimalios vykdytų procesų salygos nustatytos tiksliu bei paprastu plonasluoksnes chromatografijos, titrimetrijos ir kompiuterines analizes (Micro image 4.0) metodais. Optimizuotas biodyzelino – riebalų rūgščių esterių – gavimo procesas bei įvertinta skirtingų alkoholių įtaka Lipoprime 50T lipazės katalizuojamo rapsų aliejaus peresterinimo efektyvumui dviejuose skirtinguose tirpikliuose – n-heksane (įprastinis lipolizes reakcijų tirpiklis) bei tret-butanolyje (naujas perspektyvus tirpiklis biodyzelino sintezės reakcijoms vykdyti). Ištirta molinio substratų santykio, reakcijos temperatūros bei trukmės įtaka rapsų aliejaus metanolizės veiksmingumui tret-butanolyje. Nustatyta, kad Lipoprime 50T lipazės katalizuojama rapsų aliejaus metanolizė nheksane yra lėtas ir ilgai trunkantis procesas, o tret-butanolyje tirti procesai yra ypač spartūs ir efektyvūs (visas rapsų aliejus nustatytomis optimaliomis sąlygomis sureaguoja per apytikriai 1,5 val.). Резюме Была исследована способность коммерческого препарата Lipoprime 50T, обладающего липолитической активностью, катализировать биотехнологически и экологически важные процессы гидролиза и переэтерификации рапсового масла с определением оптимальных для них условий доступным и точным методом тонкослойной хроматографии, титрованием свободных жирных кислот и методом компьютерного анализа данных с помощью программы Micro image 4.0. Получение биодизеля – эфиров жирных кислот – путем переэтерификации рапсового масла некоторыми спиртами было исследовано в обычном для липолитических реакций растворителе н-гексане и в более приемлемом для синтеза биодизеля растворителе трет-бутиловом спирте (т-бутаноле). Также было исследовано влияние молярного соотношения субстратов, температуры и времени на состав продуктов в реакционной смеси. Процесс метанолиза рапсового масла, катализируемый липазой Lipoprime 50T, оказался медленным и малоэффективным в н-гексане, тогда как в т-бутаноле потенциал липолитической активности ферментного препарата был высок (в оптимальных условиях спустя полтора часа от начала процесса в реакционной смеси не оставалось исходного рапсового масла).

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2562 ◽  
Author(s):  
Chia-Hung Su ◽  
Hoang Nguyen ◽  
Uyen Pham ◽  
My Nguyen ◽  
Horng-Yi Juan

This study investigated the optimal reaction conditions for biodiesel production from soursop (Annona muricata) seeds. A high oil yield of 29.6% (w/w) could be obtained from soursop seeds. Oil extracted from soursop seeds was then converted into biodiesel through two-step transesterification process. A highest biodiesel yield of 97.02% was achieved under optimal acid-catalyzed esterification conditions (temperature: 65 °C, 1% H2SO4, reaction time: 90 min, and a methanol:oil molar ratio: 10:1) and optimal alkali-catalyzed transesterification conditions (temperature: 65 °C, reaction time: 30 min, 0.6% NaOH, and a methanol:oil molar ratio: 8:1). The properties of soursop biodiesel were determined and most were found to meet the European standard EN 14214 and American Society for Testing and Materials standard D6751. This study suggests that soursop seed oil is a promising biodiesel feedstock and that soursop biodiesel is a viable alternative to petrodiesel.


2014 ◽  
Vol 1053 ◽  
pp. 252-256 ◽  
Author(s):  
Fei Zhang ◽  
Shi Rong Wang ◽  
Xiang Gao Li ◽  
Yin Xiao ◽  
Lu Jin Pan

4, 5-dicyano dimethyl phthalate was an intermediate of the synthesis of phthalocyanine compounds substituted carboxyl. Under the existence of the solvent methanol, 4, 5-dibromo dimethyl phthalate was synthesized by 4,5-Dibromophthalic acid and thionyl chloride.Then it was with cuprous cyanide to get 4,5-dicyano dimethyl phthalate. By studying the process conditions, we got the optimal reaction conditions of 4,5-Dibromo dimethyl phthalate which was thionyl chloride: 4,5-Dibromophthalic acid (2.5:1.0 , molar ratio) and by enlarging 10 times of the experimental conditions, we got the yield 86.4% which was higher than the reported 66.8%.And the optimal reaction conditions of 4,5-dicyano dimethyl phthalate was that high purity argon, absolutely anhydrous DMF, cuprous cyanide and 4,5-Dibromo dimethyl phthalate whose molar ratio were 4.0:1.0. By enlarging 10 times of the experimental conditions, we got the yield 19.0%.


2014 ◽  
Vol 919-921 ◽  
pp. 2105-2108 ◽  
Author(s):  
Yan Hua Gao

This experiment synthesize ​​a rare-SO42-/ZrO2 solid acid catalyst, and investigate the optimal reaction conditions for the catalytic reaction of the catering waste oil and methanol reaction which is preparation for biodiesel. Under a condition of alcohol oil molar ratio of 9:1, a catalyst amount of 4 %, reaction time of 8 h, and reaction temperature of 240°C, more than65% of biodiesel yield was obtained. Each performance index of the Biodiesel can reach the standard of similar foreign products, and the prepared catalyst has good reusability.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 403
Author(s):  
Matea Bačić ◽  
Anabela Ljubić ◽  
Martin Gojun ◽  
Anita Šalić ◽  
Ana Jurinjak Tušek ◽  
...  

In this research, optimization of the integrated biodiesel production process composed of transesterification of edible sunflower oil, catalyzed by commercial lipase, with simultaneous extraction of glycerol from the reaction mixture was performed. Deep eutectic solvents (DESs) were used in this integrated process as the reaction and extraction media. For two systems, choline chloride:glycerol (ChCl:Gly) and choline chloride:ethylene glycol (ChCl:EG), respectively, the optimal water content, mass ratio of the phase containing the mixture of reactants (oil and methanol) with an enzyme and a DES phase (mass ratio of phases), and the molar ratio of deep eutectic solvent constituents were determined using response surface methodology (RSM). Experiments performed with ChCl:Gly resulted in a higher biodiesel yield and higher glycerol extraction efficiency, namely, a mass ratio of phases of 1:1, a mass fraction of water of 6.6%, and a molar ratio of the ChCl:Gly of 1:3.5 were determined to be the optimal process conditions. When the reaction was performed in a batch reactor under the optimal conditions, the process resulted in a 43.54 ± 0.2% yield and 99.54 ± 0.19% glycerol extraction efficiency (t = 2 h). Unfortunately, the free glycerol content was higher than the one defined by international standards (wG > 0.02%); therefore, the process was performed in a microsystem to enhance the mass transfer. Gaining the same yield and free glycerol content below the standards (wG = 0.0019 ± 0.003%), the microsystem proved to be a good direction for future process optimization.


2009 ◽  
Vol 5 (1) ◽  
Author(s):  
Jin-qiang Tian ◽  
Qiang Wang ◽  
Zhong-yuan Zhang

In order to significantly improve the biosynthesis of acyl-L-carnitines catalyzed by lipase, there must be an efficient and suitable reaction medium that is not only polar but also hydrophobic. [Bmim]PF6, which satisfies the above two requirements, was applied as the medium. The optimal reaction conditions were: for isovaleryl-L-carnitine, 0.22aW, 200mg molecular sieves, 60ºC, 4:1 of molar ratio (fatty acid:L-carnitine), 150rpm and 60h; for octanoyl-L-carnitine and palmitoyl-L-carnitine, 0.22aW, 250 mg molecular sieves, 5:1 of molar ratio (fatty acid:L-carnitine), 200rpm, 48h, 60ºC (octanoyl-L-carnitine) and 65ºC (palmitoyl-L-carnitine). Their overall yields could reach 59.14%, 90.79% and 98.03%, respectively. The yields of isovaleryl-L-carnitine, octanoyl-L-carnitine and palmitoyl-L-carnitine in [Bmim]PF6 were 16.21%, 73.67% and 44.22 % more than those in acetonitrile, respectively. [Bmim]PF6 as the medium was better than acetonitrile. It could not only enhance the yields of acyl-L-carnitines, but also protect the lipase activity.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 94 ◽  
Author(s):  
Samantha Pantoja ◽  
Vanessa Mescouto ◽  
Carlos Costa ◽  
José Zamian ◽  
Geraldo Rocha Filho ◽  
...  

The buriti palm (Mauritia flexuosa) is a palm tree widely distributed throughout tropical South America. The oil extracted from the fruits of this palm tree is rich in natural antioxidants. The by-products obtained from the buriti palm have social and economic importance as well, hence the interest in adding value to the residue left from refining this oil to obtain biofuel. The process of methyl esters production from the buriti oil soapstock was optimized considering acidulation and esterification. The effect of the molar ratio of sulfuric acid (H2SO4) to soapstock in the range from 0.6 to 1.0 and the reaction time (30–90 min) were analyzed. The best conditions for acidulation were molar ratio 0.8 and reaction time of 60 min. Next, the esterification of the fatty acids obtained was performed using methanol and H2SO4 as catalyst. The effects of the molar ratio (9:1–27:1), percentage of catalyst (2–6%) and reaction time (1–14 h) were investigated. The best reaction conditions were: 18:1 molar ratio, 4% catalyst and 14 h reaction time, which resulted in a yield of 92% and a conversion of 99.9%. All the key biodiesel physicochemical characterizations were within the parameters established by the Brazilian standard. The biodiesel obtained presented high ester content (96.6%) and oxidative stability (16.1 h).


2013 ◽  
Vol 750-752 ◽  
pp. 1231-1234 ◽  
Author(s):  
Li Xia Wang ◽  
Shu Heng Liu ◽  
Hua Yuan ◽  
Lin Lin Guo

Ion exchange resin-supported (NH4)6[MnMo9O32]8H2O with Waugh structure is used to prepare supported solid catalyst. Performance of this catalyst is researched by means of synthesis of isoamyl acetate. Optimal reaction conditions determined by orthogonal experiment are as follows: acid-alcohol molar ratio is 2.5:1, reaction time is 120 min, catalyst dosage is 0.8 g, dosage of water-carrying agent is 2.5 ml, esterification yield reaches 95.1%. This catalyst is characterized by high catalytic efficiency, easy separation and recovery, absence of environmental pollution and being reusable, etc.


2019 ◽  
Vol 8 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Seyed Mohammad Safieddin Ardebili ◽  
Xinyu Ge ◽  
Giancarlo Cravotto

Abstract The factors that influence microwave-assisted biodiesel production reactions have been analyzed in this investigation. The studied parameters included microwave (MW) power, irradiation time, and reactor pressure. The response surface method was used to optimize the reaction conditions. The conversion for the 6:1 methanol/oil molar ratio and 1% catalyst ranged from 68.4% to 96.71%. The optimized conditions were found to be 138 s of MW irradiation at 780 W and 7 bar pressure. The conversion at this point was 97.82%. Biodiesel yield increased at higher radiation times (90–130 s) and pressures (5–7 bar). Results show that MW power and irradiation time have significant effects at the 1% level, whereas pressure had significant effects at the 5% level on biodiesel production in this range. The major properties of the palm oil biodiesel produced herein have met the requirements of the EN 14214 methyl ester standard.


2017 ◽  
Vol 2 (1) ◽  
pp. 1-10 ◽  
Author(s):  
O. S. Aliozo ◽  
L. N. Emembolu ◽  
O. D. Onukwuli

Abstract In this research work, melon oil was used as feedstock for methyl ester production. The research was aimed at optimizing the reaction conditions for methyl ester yield from the oil. Response surface methodology (RSM), based on a five level, four variable central composite designs (CCD)was used to optimize and statistically analyze the interaction effect of the process parameter during the biodiesel production processes. A total of 30 experiments were conducted to study the effect of methanol to oil molar ratio, catalyst weight, temperature and reaction time. The optimal yield of biodiesel from melon oil was found to be 94.9% under the following reaction conditions: catalyst weight - 0.8%, methanol to oil molar ratio - 6:1, temperature - 55°C and reaction time of 60mins. The quality of methyl ester produced at these conditions was within the American Society for Testing and Materials (ASTM D6751) specification.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 435
Author(s):  
Aso A. Hassan ◽  
Joseph D. Smith

This work investigates the non-catalyzed supercritical methanol (SCM) process for continuous biodiesel production. The lab-scale setup was designed and used for biodiesel production in the temperature range of 520–650 K and 83–380 bar with an oil-to-methanol molar ratio ranging from 1:5 to 1:45. The experiments were performed in the coiled plug flow tubular reactor. The volumetric flow rate of the methanol/oil ranged from 0.1–10 mL/min. This work examines a new reactor technology involving preheating and pre-mixing of the methanol/oil mixture to reduce setup cost and increase biodiesel yield under the same reaction conditions. Work performed showed that FAME’s yield increased rapidly with temperature and pressure above the methanol critical points (i.e., 513 K and 79.5 bar). The best methyl-ester yield using this reaction technology was 91% at 590 K temperature and 351 bars with an oil-to-methanol ratio of 39 and a 15-min residence time. Furthermore, the kinetics of the free catalyst transesterification process was studied in supercritical methanol under different reaction conditions.


Sign in / Sign up

Export Citation Format

Share Document