scholarly journals Continuous Integrated Process of Biodiesel Production and Purification—The End of the Conventional Two-Stage Batch Process?

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 403
Author(s):  
Matea Bačić ◽  
Anabela Ljubić ◽  
Martin Gojun ◽  
Anita Šalić ◽  
Ana Jurinjak Tušek ◽  
...  

In this research, optimization of the integrated biodiesel production process composed of transesterification of edible sunflower oil, catalyzed by commercial lipase, with simultaneous extraction of glycerol from the reaction mixture was performed. Deep eutectic solvents (DESs) were used in this integrated process as the reaction and extraction media. For two systems, choline chloride:glycerol (ChCl:Gly) and choline chloride:ethylene glycol (ChCl:EG), respectively, the optimal water content, mass ratio of the phase containing the mixture of reactants (oil and methanol) with an enzyme and a DES phase (mass ratio of phases), and the molar ratio of deep eutectic solvent constituents were determined using response surface methodology (RSM). Experiments performed with ChCl:Gly resulted in a higher biodiesel yield and higher glycerol extraction efficiency, namely, a mass ratio of phases of 1:1, a mass fraction of water of 6.6%, and a molar ratio of the ChCl:Gly of 1:3.5 were determined to be the optimal process conditions. When the reaction was performed in a batch reactor under the optimal conditions, the process resulted in a 43.54 ± 0.2% yield and 99.54 ± 0.19% glycerol extraction efficiency (t = 2 h). Unfortunately, the free glycerol content was higher than the one defined by international standards (wG > 0.02%); therefore, the process was performed in a microsystem to enhance the mass transfer. Gaining the same yield and free glycerol content below the standards (wG = 0.0019 ± 0.003%), the microsystem proved to be a good direction for future process optimization.

2014 ◽  
Vol 31 (2) ◽  
pp. 90 ◽  
Author(s):  
S Ismail ◽  
S. A Abu ◽  
R Rezaur ◽  
H Sinin

In this study, the optimum biodiesel conversion from crude castor oil to castor biodiesel (CB) through transesterification method was investigated. The base catalyzed transesterification under different reactant proportion such as the molar ratio of alcohol to oil and mass ratio of catalyst to oil was studied for optimum production of castor biodiesel. The optimum condition for base catalyzed transesterification of castor oil was determined to be 1:4.5 of oil to methanol ratio and 0.005:1 of potassium hydroxide to oil ratio. The fuel properties of the produced CB such as the calorific value, flash point and density were analyzed and compared to conventional diesel. Diesel engine performance and emission test on different CB blends proved that CB was suitable to be used as diesel blends. CB was also proved to have lower emission compared to conventional diesel.


Processes ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 171 ◽  
Author(s):  
Yue-Yue Si ◽  
Shi-Wei Sun ◽  
Kun Liu ◽  
Yang Liu ◽  
Hai-Lin Shi ◽  
...  

Deep eutectic solvents (DESs) are increasingly receiving interest as a new type of green and sustainable alternative to hazardous organic solvents. In this work, a novel DES based on levulinic acid (La) and 1,4-butanediol (Buta) as an extraction media was developed for extracting the bioactive alkaloid rutaecarpine from the unripe fruits of Tetradium ruticarpum. 24 different DESs consisting of choline chloride, betaine, sugar alcohols, organic acids, amides, and sugars were prepared and tailored to test their extraction efficiency. After initial screening, a hydrophilic DES composed of La and Buta with 1:0.5 molar ratio containing 25% water was tailored for the highest extraction efficiency, followed by the optimizations of molar ratio and water content. The interaction between the molecules of La-Buta DES was investigated by nuclear magnetic resonance spectroscopy in order to confirm its deep eutectic supermolecular structure feature. The extraction conditions were optimized by single-factor experiments, including extraction temperature, extraction time, and solid-liquid ratio. The developed La-Buta DES extraction procedure was successfully applied for the analysis of rutaecarpine in Chinese patent medicines containing the unripe fruits of T. ruticarpum. The excellent property of La-Buta DES indicated its potential as a promising green solvent instead of conventional organic solvent for the extraction of rutaecarpine from the unripe fruits of T. ruticarpum, and that it can used as a sustainable and safe extraction media for other applications.


2019 ◽  
Vol 49 (4) ◽  
pp. 275-281
Author(s):  
María Fernanda Laborde ◽  
Laura Ivana Orifici ◽  
José Alberto Bandoni ◽  
Medardo Serna Gonzalez ◽  
José María Ponce Ortega ◽  
...  

In this paper was assessed the potential of biodiesel production from Jatropha curcas oil. The proposed process was simulated in the software Aspen Plus™ involving the stages of trans-esterification reaction, methanol recovering, purification of the obtained methyl esters, catalyst removing, purifying of glycerol and the energy integration through heat exchange networks (HEN). The biodiesel process was carried out through the catalytic reaction of transesterification of Jatropha oil with methanol using a molar ratio of methanol oil of 6:1, and with 1% w/w of NaOH (related to oil mass) as catalyst. Under these conditions, it is technologically feasible to carry out the production of biodiesel. With energy integration through the synthesis of HENs, reductions of 100% and 41.3% of hot and cold utilities were achieved. This way, the utility cost decreases 70.92%. The net present value (NPV) for the integrated process was 70.64% higher than the one corresponding to the non-integrated process under the same production conditions.


REAKTOR ◽  
2018 ◽  
Vol 18 (2) ◽  
pp. 122
Author(s):  
Helda Niawanti ◽  
Siti Zullaikah

Rice bran oil (RBO) based biodiesel contains unreacted oil such as monoglyceride (MG), diglyceride (DG) and triglyceride (TG) to be purified. The liquid-liquid extraction (LLE) method was used for purification using Deep Eutectic Solvent (DES). The objective of this work was to study the effect of extraction time on unreacted oil removal. RBO containing 16.49% oil with free fatty acids (FFA) content of 44.75%. Acid catalyzed methanolysis was used for biodiesel production under operating conditions: T = 60°C, t = 8 hours, molar ratio of oil/methanol  was 1/10, H2SO4 1% w/w of RBO. Crude biodiesel containing 89.05% fatty acid methyl ester (FAME), 0.05% FFA, TG 4.03%, DG 4.01%  and MG 0.30%. DES was made from choline chloride and ethylene glycol with 1/2 molar ratio, while molar ratio of biodiesel/DES was 1/2. The extraction time was varied from 15 to 240 minutes at 30°C. The highest TG, DG and MG removal were obtained at 240 minutes, they were 3.01%, 0.22% and 0.03%, respectively. FAME and FFA content were 96.55% and 0.03%. Keywords: biodiesel; DES; extraction; unreacted oil; purification


Author(s):  
Joyce S. B. Figueiredo ◽  
Bruno T. S. Alves ◽  
Vitória A. Freire ◽  
José J. N. Alves ◽  
Bianca V. S. Barbosa

Abstract Biodiesel is an alternative source of renewable energy that can be produced by a transesterification of vegetable oils. Mesoporous molecular sieves, such as SBA-15, due to high surface area and thermal stability are promising precursors for heterogeneous catalysts in the transesterification reaction. In this work, Al-SBA-15 precursor was obtained by direct hydrothermal synthesis, impregnated with different MoO3 contents (5, 10 and 15 wt%) by the pore saturation method, and evaluated as heterogeneous catalyst in the production of biodiesel from a transesterification of soybean oil with methanol. Al-SBA-15 precursor as well as MoO3/Al-SBA-15 catalyst were characterized for its structural characteristic by X-ray diffraction, textural characteristic by N2 adsorption analysis, and thermal stability by thermogravimetric analysis. An experimental planning 22 + 3 CtPt was used to evaluate the influence of MoO3 content and reaction time on biodiesel yield from soybean oil and methanol. The biodiesel content in the final product was obtained by gas chromatography. An average biodiesel yield of 96% was obtained with the catalyst 10%MoO3/Al-SBA-15 under the following reaction conditions: 20:1 methanol/soybean oil molar ratio, and 3 wt% of catalyst loading at 150 °C in 3 h. After five consecutive reaction cycles, the biodiesel yield decreased by about 34%. The density and acidity of the biodiesel produced are within the specified values for commercialization according to international standards. Graphical abstract


2020 ◽  
Vol 35 ◽  
pp. 9-17
Author(s):  
Renita Manurung ◽  
Alwi Gery Siregar

In this study, deep eutectic solvent (DES) used as co solvent for enzymatic biodiesel production from degumming palm oil (DPO). DES is formed from the salt compound choline-chloride (ChCI) with glycerol at 1:2 molar ratio. Furthermore, the effectiveness of the DES was tested by enzymatic reactions using novozym 435® for the production of palm biodiesel with raw materials DPO. The use of enzymes with the DES system can maintain the activity and stability of the novozyme enzyme measured by the yield produced until the 10th usage produces biodiesel yield > 99% with a concentration of DES 0.5% with a molar ratio of 0.5% water. Spectra of DES ChCI:glycerol and ChCI:glycerol:water characterized by FTIR, morphological structure novozym by characterized SEM and then biodiesel product analyzed by GC-MS. This shows that the ChCI:glycerol:water system in enzymatic biodiesel production has good potential to maintain enzyme activity and stability.


Author(s):  
Virginija SKORUPSKAITĖ ◽  
Eglė SENDŽIKIENĖ ◽  
Milda GUMBYTĖ

The secondary raw materials of fish can be used for various purposes in food industry, agriculture, etc. No less important way for usage of secondary raw fish, dead fish and fish farming sludge is the utilization of mentioned feedstocks for energy purposes, i.e. biofuels production. In this reearch, the possibilities of the consumption of dead fish and fish farming sludge for biodiesel and biogas production has been studied. The influence of the basic biodiesel production parameters, including the methanol to oil molar ratio, amount of catalyst, temperature and process duration on transesterification yield was determined. The guantitative and gualitative research of biogas production using different substrates such as fish waste, fish farming sludge and substrates composed of fish waste (de-oiled and non de-oiled biomass)+fish farming sludge and fish farming sludge+wastewater sludge was performed. The biodiesel yield higher than 96.5% could be achieved under the following process conditions: methanol/oil molar ratio – 4:1, amount of enzyme content – 7% from oil mass, temperature – 40 ° C, reaction time – 24 hours. The highest biogas yield (1224 ml/gVS) was determined using wet fish waste biomass and mixed substrates consisted of fish waste and fish farming sludge. The results of qualitative biogas research revealed, that biogas produced from both homogeneous and heterogeneous substrates contained more than 60% of methane. The highest calorific value (app. 70% of methane) had biogas gained from fish waste biomass.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 869 ◽  
Author(s):  
Shu Hong ◽  
Yang Yuan ◽  
Kaitao Zhang ◽  
Hailan Lian ◽  
Henrikki Liimatainen

A deep eutectic solvent (DES) derived from ferric chloride hexahydrate and betaine chloride (molar ratio of 1:1) was used as hydrolytic media for production of chitin nanocrystals (ChNCs) with a high yield (up to 88.5%). The synergistic effect of Lewis acid and released Brønsted acid from betaine hydrochloride enabled the efficient hydrolysis of chitin for production of ChNCs coupled with ultrasonication with low energy consumption. The obtained ChNCs were with an average diameter of 10 nm and length of 268 nm, and a crystallinity of 89.2% with optimal synthesis conditions (at 100 °C for 1 h with chitin-to-DES mass ratio of 1:20). The ChNCs were further investigated as efficient emulsion stabilizers, and they resulted in stable o/w emulsions even at a high oil content of 50% with a low ChNC dosage of 1 mg/g. Therefore, a potential approach based on a DES on the production of chitin-based nanoparticles as emulsifiers is introduced.


2021 ◽  
Vol 75 (5) ◽  
pp. 257-276
Author(s):  
Ana Velickovic ◽  
Jelena Avramovic ◽  
Milan Kostic ◽  
Jugoslav Krstic ◽  
Olivera Stamenkovic ◽  
...  

Wheat straw ash (WSA) was investigated as a new catalyst in biodiesel production from sunflower oil. The catalyst was characterized by temperature-programmed decomposition, X- ray powder diffraction, Hg porosimetry, N2 physisorption, and scanning electron microscopy - energy dispersive X-ray spectroscopy methods. The methanolysis reaction was tested in the temperature range of 55?65?C, the catalyst loading range 10?20 % of the oil weight, and the methanol-to-oil molar ratio range 18 : 1?24 : 1. The reaction conditions of the sunflower oil methanolysis over WSA were optimized by using the response surface methodology in combination with the historical experimental design. The optimum process conditions ensuring the highest fatty acid methyl esters (FAME) content of 98.6 % were the reaction temperature of 60.3?C, the catalyst loading of 11.6 % (based on the oil weight), the methanol-to-oil molar ratio of 18.3 :1, and the reaction time of 124 min. The values of the statistical criteria, such as coefficients of determination (R2 = 0.811, R2 = 0.789, R2 = 0.761) and the mean relative percent deviation (MRPD) value of 10.6 % (66 data) implied the acceptability and precision of the developed model. The FAME content after 4 h of reaction under the optimal conditions decreased to 37, 12, and 3 %, after the first, second, and third reuse, respectively.


2021 ◽  
pp. 104-111
Author(s):  
Tafere Aga Bullo ◽  
Feyissa Bekele Fana

The crisis of energy due to the increasing awareness of the depletion of fossil fuel resources, biodiesel is an alternative energy source and promising potential energy that grows rapidly, due to its high contribution to the environment friendly, renewable, non-toxicity, biodegradability, essentially sulfur-free, and as a strategical source of renewable energy in substitution to diesel oil and contributes a minimal amount of net greenhouse gases. In this study, the extracted oil used for biodiesel production from waste avocado peel was investigated in a laboratory approach. Experimental results evaluate the major optimum process parameters for base-catalyzed transesterification on biodiesel yield as well as its properties. The most important variables affecting methyl ester yield during the transesterification reaction are the molar ratio of alcohol to oil and the reaction temperature. A 95.2% FAME conversion was obtained using a methanol/oil ratio of 6:1, 1.21g NaOH, reaction time 67.5 min, and 60 0C reaction temperature. Important properties of (characterization) produced biodiesel are, (pHof 7.8, specific gravity of 0.88, density at 15 0C, kg/m3, the kinematic viscosity of biodiesel was found to be 4.22 m 2·s −1 at 40 0C, the flashpoint was 161 0C and Cetane number of 49 are well-matched the relevant international standards for biodiesel quality produced.  This result shows that the oil obtained from avocado peel can be used for biodiesel production as an alternative fuel as compared to those of ASTM and EN standards.


Sign in / Sign up

Export Citation Format

Share Document