scholarly journals CONSIDERING THE ISSUE OF RENOVATING PUBLIC BUILDINGS WITH REFERENCE TO IN-KIND INVESTIGATIONS INTO WALL HEAT TRANSFER COEFFICIENTS / VISUOMENINIŲ PASTATŲ ATNAUJINIMO PROBLEMOS NAGRINĖJIMAS REMIANTIS NATŪRINIAIS SIENŲ ŠILUMOS PERDAVIMO KOEFICIENTŲ TYRIMAIS

2013 ◽  
Vol 5 (2) ◽  
pp. 82-91 ◽  
Author(s):  
Robertas Volvačiovas ◽  
Zenonas Turskis ◽  
Česlovas Ignatavičius ◽  
Leonas Ustinovičius ◽  
Audrius Ruzgys

This article raises the problem of high energy consumption stimulated by heating buildings and preparing hot water. The paper shortly revises the state of renovating public buildings in Lithuania. A number of scientists devote close attention to examining various aspects of building renovation (technical regulations on constructions, subsidies provided by the state, cost-effectiveness, factors influencing building renovation, etc.). The article presents a few studies by foreign scientists, lists factors that determine public building renovation (unsatisfactory indoor air hygiene and floor temperature, indoor relative humidity, indoor air velocity, indoor carbon dioxide concentration, physical deterioration of a large building, poor aesthetic appearance of the building, etc.) and demonstrates a few practical examples. In accordance with Lithuanian design codes, a methodology for determining heat transfer coefficients in public buildings is provided. Besides, investigations into heat transfer coefficients before and after the renovation of public buildings have been conducted. A few nursery school buildings in Lithuania have been examined applying laboratory equipment before and after renovation. It was found that the wall heat transfer coefficient of properly designed and insulated buildings falls by more than 4–5 times to reach the normal value of the heat transfer coefficient (value of the heat transfer coefficient falls from 1.12 to 0.22 W/(m2·K)). A comparison of an external thermal insulation plastering composite system with an external aeration heat-insulated system has been done. The estimation has revealed that due to lower costs, better results of thermal resistance obtained using the external thermal insulation plastering composite system can produce better wall heat transfer coefficient values. The obtained results have been determined referring to better wall insulation tightness. The paper also summarizes data on heating buildings and consumption of prepared hot water before and after renovation. On the basis of the findings acquired employing the degree-day–method, public building energy consumption for heating and hot water preparation decreased from 41.30 to 43.73%. Santrauka Straipsnyje trumpai apžvelgta pastatų energinio efektyvumo problematika, visuomeninių pastatų atnaujinimo situacija Lietuvoje, pateikiami keli užsienio valstybių mokslininkų darbų, kuriuose nagrinėjama pastatų atnaujinimo tematika, pavyzdžiai. Be praktinių pavyzdžių, nurodomi veiksniai, lemiantys visuomeninės paskirties pastatų atnaujinimą. Taip pat pateikiami visuomeninės paskirties pastatų sienų šilumos perdavimo koeficientų tyrimų, atliktų naudojant laboratorinę įrangą, rezultatai, ištyrus kelis visuomeninės paskirties pastatus Lietuvoje prieš ir po pastatų atnaujinimo. Palyginta išorinė tinkuojama sudėtinė termoizoliacinė sistema su išorine vėdinamąja termoizoliacine sistema, apibendrinta nagrinėjamų pastatų sąnaudų šildyti ir karštam vandeniui ruošti ekonominė nauda prieš ir po pastatų atnaujinimo taikant dienolaipsnių metodiką.

Author(s):  
Ann-Christin Fleer ◽  
Markus Richter ◽  
Roland Span

AbstractInvestigations of flow boiling in highly viscous fluids show that heat transfer mechanisms in such fluids are different from those in fluids of low viscosity like refrigerants or water. To gain a better understanding, a modified standard apparatus was developed; it was specifically designed for fluids of high viscosity up to 1000 Pa∙s and enables heat transfer measurements with a single horizontal test tube over a wide range of heat fluxes. Here, we present measurements of the heat transfer coefficient at pool boiling conditions in highly viscous binary mixtures of three different polydimethylsiloxanes (PDMS) and n-pentane, which is the volatile component in the mixture. Systematic measurements were carried out to investigate pool boiling in mixtures with a focus on the temperature, the viscosity of the non-volatile component and the fraction of the volatile component on the heat transfer coefficient. Furthermore, copper test tubes with polished and sanded surfaces were used to evaluate the influence of the surface structure on the heat transfer coefficient. The results show that viscosity and composition of the mixture have the strongest effect on the heat transfer coefficient in highly viscous mixtures, whereby the viscosity of the mixture depends on the base viscosity of the used PDMS, on the concentration of n-pentane in the mixture, and on the temperature. For nucleate boiling, the influence of the surface structure of the test tube is less pronounced than observed in boiling experiments with pure fluids of low viscosity, but the relative enhancement of the heat transfer coefficient is still significant. In particular for mixtures with high concentrations of the volatile component and at high pool temperature, heat transfer coefficients increase with heat flux until they reach a maximum. At further increased heat fluxes the heat transfer coefficients decrease again. Observed temperature differences between heating surface and pool are much larger than for boiling fluids with low viscosity. Temperature differences up to 137 K (for a mixture containing 5% n-pentane by mass at a heat flux of 13.6 kW/m2) were measured.


2014 ◽  
Vol 925 ◽  
pp. 625-629 ◽  
Author(s):  
C.S. Oon ◽  
A. Badarudin ◽  
S.N. Kazi ◽  
M. Fadhli

The heat transfer in annular heat exchanger with titanium oxide of 1.0 volume % concentration as the medium of heat exchanger is considered in this study. The heat transfer simulation of the flow is performed by using Computational Fluid Dynamics package, Ansys Fluent. The heat transfer coefficients of water to titanium oxide nanofluid flowing in a horizontal counter-flow heat exchanger under turbulent flow conditions are investigated. The results show that the convective heat transfer coefficient of the nanofluid is slightly higher than that of the base fluid by several percents. The heat transfer coefficient increases with the increase of the mass flow rate of hot water and also the nanofluid.


1997 ◽  
Vol 119 (2) ◽  
pp. 381-389 ◽  
Author(s):  
M. E. Taslim ◽  
C. M. Wadsworth

Turbine blade cooling, a common practice in modern aircraft engines, is accomplished, among other methods, by passing the cooling air through an often serpentine passage in the core of the blade. Furthermore, to enhance the heat transfer coefficient, these passages are roughened with rib-shaped turbulence promoters (turbulators). Considerable data are available on the heat transfer coefficient on the passage surface between the ribs. However, the heat transfer coefficients on the surface of the ribs themselves have not been investigated to the same extent. In small aircraft engines with small cooling passages and relatively large ribs, the rib surfaces comprise a large portion of the passage heat transfer area. Therefore, an accurate account of the heat transfer coefficient on the rib surfaces is critical in the overall design of the blade cooling system. The objective of this experimental investigation was to conduct a series of 13 tests to measure the rib surface-averaged heat transfer coefficient, hrib, in a square duct roughened with staggered 90 deg ribs. To investigate the effects that blockage ratio, e/Dh and pitch-to-height ratio, S/e, have on hrib and passage friction factor, three rib geometries corresponding to blockage ratios of 0.133, 0.167, and 0.25 were tested for pitch-to-height ratios of 5, 7, 8.5, and 10. Comparisons were made between the rib average heat transfer coefficient and that on the wall surface between two ribs, hfloor, reported previously. Heat transfer coefficients of the upstream-most rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared. It is concluded that: 1 The rib average heat transfer coefficient is much higher than that for the area between the ribs; 2 similar to the heat transfer coefficient on the surface between the ribs, the average rib heat transfer coefficient increases with the blockage ratio; 3 a pitch-to-height ratios of 8.5 consistently produced the highest rib average heat transfer coefficients amongst all tested; 4 under otherwise identical conditions, ribs in upstream-most position produced lower heat transfer coefficients than the midchannel positions, 5 the upstream-most rib average heat transfer coefficients decreased with the blockage ratio; and 6 thermal performance decreased with increased blockage ratio. While a pitch-to-height ratio of 8.5 and 10 had the highest thermal performance for the smallest rib geometry, thermal performance of high blockage ribs did not change significantly with the pitch-to-height ratio.


1965 ◽  
Vol 13 (2) ◽  
pp. 153 ◽  
Author(s):  
GI Pearman

An account is given of techniques and methods used in measurement of convective heat transfer from leaves of the succulent Carpobrotus. Heat transfer was studied under still air conditions and in wind (in a specially constructed wind-tunnel) up to velocities of 300 cm sec-1. A correlation was demonstrated between experimentally obtained values of heat transfer coefficients and theoretical values calculated from empirical formulae. At wind velocities of 300 cm sec-1 the heat transfer coefficient for Carpobrotus was increased to seven times its value still air.


Author(s):  
Michael Ngadi ◽  
Julian N. Ikediala

Average heat transfer coefficients of chicken drum shaped bodies were estimated using aluminum chicken drum shaped models. Three model drum sizes namely small, medium and large, and three frying oil viscosities for three temperature differences were used. Estimated heat transfer coefficients were in the range from 67 to 163 W/m²K. Increasing temperature difference increased heat transfer coefficient. Conversely, increasing the size of the chicken drum model bodies and oil viscosities decreased the heat transfer coefficient. A heat transfer correlation equation between average Nu and Ra was derived. The methodology developed in this study could be used to estimate heat transfer coefficients of chicken drum during deep-fat frying.


Author(s):  
S. Baldauf ◽  
M. Scheurlen ◽  
A. Schulz ◽  
S. Wittig

Heat transfer coefficients and the resulting heat flux reduction due to film cooling on a flat plate downstream a row of cylindrical holes are investigated. Highly resolved two dimensional heat transfer coefficient distributions were measured by means of infrared thermography and carefully corrected for local internal testplate conduction and radiation effects [1]. These locally acquired data are processed to lateral average heat transfer coefficients for a quantitative assessment. A wide range variation of the flow parameters blowing rate and density ratio as well as the geometrical parameters streamwise ejection angle and hole spacing is examined. The effects of these dominating parameters on the heat transfer augmentation from film cooling are discussed and interpreted with the help of highly resolved surface results of effectiveness and heat transfer coefficients presented earlier [2]. A new method of evaluating the heat flux reduction from film cooling is presented. From a combination of the lateral average of both the adiabatic effectiveness and the heat transfer coefficient, the lateral average heat flux reduction is processed according to the new method. The discussion of the total effect of film cooling by means of the heat flux reduction reveals important characteristics and constraints of discrete hole ejection. The complete heat transfer data of all measurements are used as basis for a new correlation of lateral average heat transfer coefficients. This correlation combines the effects of all the dominating parameters. It yields a prediction of the heat transfer coefficient from the ejection position to far downstream, including effects of extreme blowing angles and hole spacing. The new correlation has a modular structure to allow for future inclusion of additional parameters. Together with the correlation of the adiabatic effectiveness it provides an immediate determination of the streamwise heat flux reduction distribution of cylindrical hole film cooling configurations.


1997 ◽  
Vol 64 (1) ◽  
pp. 57-67 ◽  
Author(s):  
R. SELWYN JEBSON ◽  
HONG CHEN

The performances of falling film evaporators used in the New Zealand dairy industry for concentrating whole milk were evaluated by determining kg steam used/kg water evaporated, and the heat transfer coefficient of each pass in the evaporators. A specially written computer program was used to calculate the results. The heat transfer coefficients varied from 0·3 to 3·0 kW/m2K, and the steam consumption from 0·10 to 0·39 kg steam/kg evaporation, depending on the number of effects. The steam consumptions for whole and skim milk were similar. The momentum of the vapours passing down the tubes, the temperature difference across the tubes, the viscosity of the feed and the liquid loading were found to be the main factors controlling the heat transfer coefficient. A correlation between the heat transfer coefficient and these factors is presented, and other factors likely to have an influence on the performance are discussed. The correlation is compared with that obtained for skim milk.


2018 ◽  
Vol 194 ◽  
pp. 01022
Author(s):  
Anastasia Islamova

Thin films evaporation of distilled water, ethanol and HFE-7100 liquid was experimentally studied. The dependences of heat transfer coefficients in time were determined. It has been established that with a decrease in the layer thickness of distilled water and ethanol, the heat transfer coefficient increases. For the HFE liquid, the nature of the change is different: as the time increases, the heat transfer coefficient decreases.


Author(s):  
M. E. Taslim ◽  
A. Rahman ◽  
S. D. Spring

Liquid crystals are used in this experimental investigation to measure the heat transfer coefficient in a spanwise rotating channel with two opposite rib-roughened walls. The ribs (also called turbulence promoters or turbulators) are configured in a staggered arrangement with an angle of attack to the mainstream flow, α, of 90° for all cases. Results are presented for three values of turbulator blockage ratio, e/Dh (0.1333, 0.25, 0.333) and for a range of Reynolds numbers from 15,000 to 50,000 while the test section is rotated at different speeds to give Rotational Reynolds numbers between 450 and 1800. The Rossby number range is 10 to 100 (Rotation number of 0.1 to 0.01). The effect of turbulator blockage ratios on heat transfer enhancement is also investigated. Comparisons are made between the results of geometrically identical stationary and rotating passages of otherwise similar operating conditions. The results indicate that a significant enhancement in heat transfer is achieved in both the stationary and rotating cases, when the surfaces are roughened with turbulators. For the rotating case, a maximum increase over that of the stationary case of about 45% in the heat transfer coefficient is seen for a blockage ratio of 0.133 on the trailing surface in the direction of rotation and the minimum is a decrease of about 6% for a blockage ratio of 0.333 on the leading surface, for the range of rotation numbers tested. The technique of using liquid crystals to determine heat transfer coefficients in this investigation proved to be an effective and accurate method especially for nonstationary test sections.


Author(s):  
Dan Li ◽  
Changhong Peng ◽  
Yun Guo

The heat transfer coefficient of the curved surface reflects the external cooling capacity of the reactor pressure vessel under serious accident. This topic used Ansys fluent software 14.5 as simulation tool, mesh generation of the flow area is carried out after the geometric model of the lower head, and then the heat transfer coefficient of the curved surface is numerically simulated. In this paper, the heat transfer coefficient formulas are fitted according to the laminar and turbulent flow, and the influence of the cavity on the heat transfer coefficient is discussed. Calculation results show that, for single-phase flow both laminar and turbulent flow, the heat transfer coefficients increase with the increase of Re, and increase with the increase of Pr, decrease with the increase of theta; According to the comparison of the heat transfer coefficients under different radii of curved surfaces, reducing the radius is beneficial to increase the heat transfer capability; In subcooled boiling flow, the void fraction is less than 21%, the heat transfer coefficient increases with the increases of the void fraction, the void fraction is conducive to heat transfer; but when the void fraction is higher than 21%, it is opposite.


Sign in / Sign up

Export Citation Format

Share Document