Theoretical End Experimental Evaluation of Perforations Effect on Sound Insulation

Author(s):  
Olga Khrystoslavenko ◽  
Raimondas Grubliauskas

To design a sound-absorbing panel, it is important to identify factors that affect the maximum sound absorption of low, middle and high frequency sounds. Perforation effect is very important for the noise-reducing and noiseabsorbing panels. Perforations are often used for sound reduction. Experimental data shows that the perforation is very effective to absorb low-frequency noise. In the presented study, influence of perforation coefficient of noise reduction was analyzed with theoretical and experimental methods. The experiments were conducted in noise reduction chamber using an perforated construction with glass wool filler. Sound reductions index of 15 dB indicates good acoustic properties of the panel.

2013 ◽  
Vol 785-786 ◽  
pp. 1244-1247
Author(s):  
Yan Liu ◽  
Xiao Juan Zhang ◽  
Zong Cai Liu

With the development of the car industry, the pace of the urban construction is accelerating as well. Cars have gradually entered the ordinary family. As the car noise has a big effect on the health of the passengers, as well as on the surroundings, one of the car industry key duties is the car noise reduction. By researching the materials applied to car, this article describe that PU material could reduce the impact of the engine noise on the cab efficiently; Polypropylene needle-spun felt could reduce the noise passed by chassis; PET material's sound absorption is poor in mid bass, however in high frequency it's sound absorption is good; sound absorbing sponge can reduce the low and high frequency noise; The combine sponge can reduce the noise from the tire and transmission system ; Cotton material could absorb the high frequency noise.


2020 ◽  
Vol 27 (2) ◽  
pp. 155-168 ◽  
Author(s):  
Nicola Granzotto ◽  
Antonino Di Bella ◽  
Edoardo Alessio Piana

Clay hollow brick walls are still popular in building industry, but the prediction of their sound insulation properties is not straightforward due to their inhomogeneous and anisotropic characteristics. In this article, a classic approach has been used to determine the sound transmission coefficient of brick walls, assuming an orthotropic behaviour and deriving the mechanical and dynamic characteristics from datasheet information. Different types of walls with horizontal and vertical mortar joints have been analysed. Experimental measurements of the sound reduction index carried out according to ISO 10140-2 standard have been performed, and the resulting values are compared with the predictions in the proposed model. It was found that the sound reduction index can be fairly predicted in the low-frequency range and it is correctly predicted in the mass law region, whereas in the high-frequency range the inner block structure is responsible for a loss of performance which is difficult to predict with the analytical methods.


1992 ◽  
Vol 11 (2) ◽  
pp. 42-46
Author(s):  
Anna Kaczmarska ◽  
Danuta Augustyriska

The number of control cabins installed in industry has increased considerably during the last few years. Most cabins installed nowadays show a satisfactory noise reduction in the frequency range above 500 Hz. The effect of noise damping however shows a gradual decrease for lower frequencies. The present paper is a description of the distribution of low frequency noise in different types of control cabins installed in typical low frequency noise environments in steel plants and the machine building industry. Measurements were made in 20 control cabins, constructed of metal and stone Measurements of sound pressure levels in octave bands were made inside and outside the cabins. The sound pressure level in octave bands in the low frequency range (4–31.5 Hz) inside the cabins was high and varied between 60–108 dB. This is probably due to the insufficient noise reduction for lower frequencies. In some control cabins there was an increased level of low frequency noise inside the cabin compared to the outside. In these control cabins sound pressure levels exceed the admissible values according to Polish standards. The increase of noise level within the low frequency range is considered to be based on resonances.


2014 ◽  
Vol 1078 ◽  
pp. 183-186 ◽  
Author(s):  
Jing Yu He ◽  
Ying Bo Xu

The experimental analysis is conducted for jet noise reduction of separate flow chevron pylon-based nozzles at takeoff condition. The experimental results indicate that the pylon makes a noise reduction at low-frequency but produces an increase at high-frequency, together with an overall sound pressure reduction below the pylon. Compared to chevron nozzle without pylon, the adding of a pylon reduces noise benefit of chevron nozzles found in the isolated nozzle without a pylon. The best low-frequency noise reduction is located below the pylon where peak noise reduction is as high as about 1.3dB on frequency spectrum.


Textiles ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 55-85
Author(s):  
Tufail Hassan ◽  
Hafsa Jamshaid ◽  
Rajesh Mishra ◽  
Muhammad Qamar Khan ◽  
Michal Petru ◽  
...  

Recently, very rapid growth has been observed in the innovations and use of natural-fiber-based materials and composites for acoustic applications due to their environmentally friendly nature, low cost, and good acoustic absorption capability. However, there are still challenges for researchers to improve the mechanical and acoustic properties of natural fiber composites. In contrast, synthetic fiber-based composites have good mechanical properties and can be used in a wide range of structural and automotive applications. This review aims to provide a short overview of the different factors that affect the acoustic properties of natural-fiber-based materials and composites. The various factors that influence acoustic performance are fiber type, fineness, length, orientation, density, volume fraction in the composite, thickness, level of compression, and design. The details of various factors affecting the acoustic behavior of the fiber-based composites are described. Natural-fiber-based composites exhibit relatively good sound absorption capability due to their porous structure. Surface modification by alkali treatment can enhance the sound absorption performance. These materials can be used in buildings and interiors for efficient sound insulation.


2020 ◽  
pp. 1475472X2097838
Author(s):  
CK Sumesh ◽  
TJS Jothi

This paper investigates the noise emissions from NACA 6412 asymmetric airfoil with different perforated extension plates at the trailing edge. The length of the extension plate is 10 mm, and the pore diameters ( D) considered for the study are in the range of 0.689 to 1.665 mm. The experiments are carried out in the flow velocity ( U∞) range of 20 to 45 m/s, and geometric angles of attack ( αg) values of −10° to +10°. Perforated extensions have an overwhelming response in reducing the low frequency noise (<1.5 kHz), and a reduction of up to 6 dB is observed with an increase in the pore diameter. Contrastingly, the higher frequency noise (>4 kHz) is observed to increase with an increase in the pore diameter. The dominant reduction in the low frequency noise for perforated model airfoils is within the Strouhal number (based on the displacement thickness) of 0.11. The overall sound pressure levels of perforated model airfoils are observed to reduce by a maximum of 2 dB compared to the base airfoil. Finally, by varying the geometric angle of attack from −10° to +10°, the lower frequency noise is seen to increase, while the high frequency noise is observed to decrease.


1967 ◽  
Vol 42 (5) ◽  
pp. 1202-1203
Author(s):  
J. Ronald Bailey ◽  
Franklin D. Hart

2015 ◽  
Vol 63 (1) ◽  
pp. 20-35 ◽  
Author(s):  
Dong Guan ◽  
Jiu Hui Wu ◽  
Li Jing ◽  
Nansha Gao ◽  
Mingming Hou

Sign in / Sign up

Export Citation Format

Share Document