scholarly journals Extinction in the Star Cluster SAI 113 and Galactic Structure in Carina

2017 ◽  
Vol 153 (4) ◽  
pp. 156 ◽  
Author(s):  
Giovanni Carraro ◽  
David G. Turner ◽  
Daniel J. Majaess ◽  
Gustavo L. Baume ◽  
Roberto Gamen ◽  
...  
1966 ◽  
Vol 24 ◽  
pp. 322-330
Author(s):  
A. Beer

The investigations which I should like to summarize in this paper concern recent photo-electric luminosity determinations of O and B stars. Their final aim has been the derivation of new stellar distances, and some insight into certain patterns of galactic structure.


2018 ◽  
Vol 4 (1) ◽  
pp. 52-81 ◽  
Author(s):  
Melanie Sticker-Jantscheff

Among the most interesting features of the provincial Roman veteran colony of Augusta Raurica (present-day Switzerland) are its sanctuaries, which were constructed during a period of profound cultural transformation. The current study examines the temples within their surrounding landscape and skyscape, to explore the possibility that their locations and orientations may bear testimony to the cosmological beliefs of the colony's inhabitants. The findings suggest that alignments with the star cluster of the Pleiades and the constellation Orion constituted a connective element between earth and sky and were used by the Gallo-Roman elites to reconcile agricultural work and seasonal festivities with new socio-political and religious requirements.


2021 ◽  
Vol 502 (4) ◽  
pp. 5185-5199
Author(s):  
Hamidreza Mahani ◽  
Akram Hasani Zonoozi ◽  
Hosein Haghi ◽  
Tereza Jeřábková ◽  
Pavel Kroupa ◽  
...  

ABSTRACT Some ultracompact dwarf galaxies (UCDs) have elevated observed dynamical V-band mass-to-light (M/LV) ratios with respect to what is expected from their stellar populations assuming a canonical initial mass function (IMF). Observations have also revealed the presence of a compact dark object in the centres of several UCDs, having a mass of a few to 15 per cent of the present-day stellar mass of the UCD. This central mass concentration has typically been interpreted as a supermassive black hole, but can in principle also be a subcluster of stellar remnants. We explore the following two formation scenarios of UCDs: (i) monolithic collapse and (ii) mergers of star clusters in cluster complexes as are observed in massively starbursting regions. We explore the physical properties of the UCDs at different evolutionary stages assuming different initial stellar masses of the UCDs and the IMF being either universal or changing systematically with metallicity and density according to the integrated Galactic IMF theory. While the observed elevated M/LV ratios of the UCDs cannot be reproduced if the IMF is invariant and universal, the empirically derived IMF that varies systematically with density and metallicity shows agreement with the observations. Incorporating the UCD-mass-dependent retention fraction of dark remnants improves this agreement. In addition, we apply the results of N-body simulations to young UCDs and show that the same initial conditions describing the observed M/LV ratios reproduce the observed relation between the half-mass radii and the present-day masses of the UCDs. The findings thus suggest that the majority of UCDs that have elevated M/LV ratios could have formed monolithically with significant remnant-mass components that are centrally concentrated, while those with small M/LV values may be merged star cluster complexes.


1971 ◽  
Vol 10 ◽  
pp. 15-19
Author(s):  
George B. Rybicki

AbstractIt is shown that the time of relaxation by particle encounters of self-gravitating systems in the plane interacting by 1/r2 forces is of the same order of magnitude as the mean orbit time. Therefore such a system does not have a Vlasov limit for large numbers of particles, unless appeal is made to some non-zero thickness of the disk. The relevance of this result to numerical experiments on galactic structure is discussed.


Author(s):  
Benjamin L. Davis ◽  
Alister W. Graham

Abstract Recent X-ray observations by Jiang et al. have identified an active galactic nucleus (AGN) in the bulgeless spiral galaxy NGC 3319, located just $14.3\pm 1.1$ Mpc away, and suggest the presence of an intermediate-mass black hole (IMBH; $10^2\leq M_\bullet/\textrm{M}_{\odot}\leq 10^5$ ) if the Eddington ratios are as high as 3 to $3\times10^{-3}$ . In an effort to refine the black hole mass for this (currently) rare class of object, we have explored multiple black hole mass scaling relations, such as those involving the (not previously used) velocity dispersion, logarithmic spiral arm pitch angle, total galaxy stellar mass, nuclear star cluster mass, rotational velocity, and colour of NGC 3319, to obtain 10 mass estimates, of differing accuracy. We have calculated a mass of $3.14_{-2.20}^{+7.02}\times10^4\,\textrm{M}_\odot$ , with a confidence of 84% that it is $\leq $ $10^5\,\textrm{M}_\odot$ , based on the combined probability density function from seven of these individual estimates. Our conservative approach excluded two black hole mass estimates (via the nuclear star cluster mass and the fundamental plane of black hole activity—which only applies to black holes with low accretion rates) that were upper limits of ${\sim}10^5\,{\textrm M}_{\odot}$ , and it did not use the $M_\bullet$ – $L_{\textrm 2-10\,\textrm{keV}}$ relation’s prediction of $\sim$ $10^5\,{\textrm M}_{\odot}$ . This target provides an exceptional opportunity to study an IMBH in AGN mode and advance our demographic knowledge of black holes. Furthermore, we introduce our novel method of meta-analysis as a beneficial technique for identifying new IMBH candidates by quantifying the probability that a galaxy possesses an IMBH.


1998 ◽  
Vol 11 (1) ◽  
pp. 570-570
Author(s):  
Johan Holmberg ◽  
Lennart Lindegren ◽  
Chris Flynn

We use the Hipparcos survey to derive an improved model of the local galactic structure. The availability of parallaxes for all the stars permits direct determination of stellar distributions, eliminating the basic indeterminacy of classical methods based on star counts. Hipparcos gives for the first time a truly three-dimensional view of the solar vicinity, and a complete, homogeneous and highly accurate set of magnitudes and colours. This means that new techniques can be applied in the treatment of the data which place strong constraints on a model that tries to describe the local Galactic structure. Here we investigate how well a static model of low complexitycan describe the Hipparcos observations. The interpretation of the Hipparcos data is complicated by various observational errors and selection effects that are hard to treat correctly. We do not try to correct the data, but instead use a model and subject this model to the same observational errors and selection effects. A model catalogue is created that can be compared with the observed catalogue directly in the observational domain, thereby eliminating the effects from various biases. Many features in the HR diagram are for the first time seen in field stars thanks to Hipparcos, such as the slanted red giant clump, previously seen in rich old open clusters such as Berkeley 18. This and other features ofthe observed HR diagram are well reproduced by the model thanks to the rather detailed modelling of the joint Mv/B — V distribution. Actually, separate distributions were derived for the three different components, disk, thick disk and halo, using the kinematic characteristics of the components to discriminate between them.


2015 ◽  
Vol 803 (2) ◽  
pp. 63 ◽  
Author(s):  
Dongwon Kim ◽  
Helmut Jerjen ◽  
Antonino P. Milone ◽  
Dougal Mackey ◽  
Gary S. Da Costa
Keyword(s):  

2017 ◽  
Vol 602 ◽  
pp. A22 ◽  
Author(s):  
M. Andersen ◽  
M. Gennaro ◽  
W. Brandner ◽  
A. Stolte ◽  
G. de Marchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document