scholarly journals Orbital Decay of Short-period Exoplanets via Tidal Resonance Locking

2021 ◽  
Vol 918 (1) ◽  
pp. 16
Author(s):  
Linhao Ma ◽  
Jim Fuller
Keyword(s):  
2019 ◽  
Vol 486 (3) ◽  
pp. 3963-3974 ◽  
Author(s):  
Jaime A Alvarado-Montes ◽  
Carolina García-Carmona

Abstract The discovery of many giant planets in close-in orbits and the effect of planetary and stellar tides in their subsequent orbital decay have been extensively studied in the context of planetary formation and evolution theories. Planets orbiting close to their host stars undergo close encounters, atmospheric photoevaporation, orbital evolution, and tidal interactions. In many of these theoretical studies, it is assumed that the interior properties of gas giants remain static during orbital evolution. Here, we present a model that allows for changes in the planetary radius as well as variations in the planetary and stellar dissipation parameters, caused by the planet’s contraction and change of rotational rates from the strong tidal fields. In this semi-analytical model, giant planets experience a much slower tidal-induced circularization compared to models that do not consider these instantaneous changes. We predict that the eccentricity damping time-scale increases about an order of magnitude in the most extreme case for too inflated planets, large eccentricities, and when the planet’s tidal properties are calculated according to its interior structural composition. This finding potentially has significant implications on interpreting the period–eccentricity distribution of known giant planets as it may naturally explain the large number of non-circularized, close period currently known. Additionally, this work may help to constrain some models of planetary interiors, and contribute to a better insight about how tides affect the orbital evolution of extrasolar systems.


2019 ◽  
Vol 486 (2) ◽  
pp. 2265-2280 ◽  
Author(s):  
Jean Teyssandier ◽  
Dong Lai ◽  
Michelle Vick

Abstract The population of giant planets on short-period orbits can potentially be explained by some flavours of high-eccentricity migration. In this paper, we investigate one such mechanism involving ‘secular chaos’, in which secular interactions between at least three giant planets push the inner planet to a highly eccentric orbit, followed by tidal circularization and orbital decay. In addition to the equilibrium tidal friction, we incorporate dissipation due to dynamical tides that are excited inside the giant planet. Using the method of Gaussian rings to account for planet–planet interactions, we explore the conditions for extreme eccentricity excitation via secular chaos and the properties of hot Jupiters formed in this migration channel. Our calculations show that once the inner planet reaches a sufficiently large eccentricity, dynamical tides quickly dissipate the orbital energy, producing an eccentric warm Jupiter, which then decays in semimajor axis through equilibrium tides to become a hot Jupiter. Dynamical tides help the planet avoid tidal disruption, increasing the chance of forming a hot Jupiter, although not all planets survive the process. We find that the final orbital periods generally lie in the range of 2–3 d, somewhat shorter than those of the observed hot Jupiter population. We couple the planet migration to the stellar spin evolution to predict the final spin-orbit misalignments. The distribution of the misalignment angles we obtain shows a lack of retrograde orbits compared to observations. Our results suggest that high-eccentricity migration via secular chaos can only account for a fraction of the observed hot Jupiter population.


Author(s):  
Jaime A Alvarado-Montes ◽  
Mario Sucerquia ◽  
Carolina García-Carmona ◽  
Jorge I Zuluaga ◽  
Lee Spitler ◽  
...  

Abstract Unveiling the fate of ultra-short period (USP) planets may help us understand the qualitative agreement between tidal theory and the observed exoplanet distribution. Nevertheless, due to the time-varying interchange of spin-orbit angular momentum in star-planet systems, the expected amount of tidal friction is unknown and depends on the dissipative properties of stellar and planetary interiors. In this work, we couple structural changes in the star and the planet resulting from the energy released per tidal cycle and simulate the orbital evolution of USP planets and the spin-up produced on their host star. For the first time, we allow the strength of magnetic braking to vary within a model that includes photo-evaporation, drag caused by the stellar wind, stellar mass loss, and stellar wind enhancement due to the in-falling USP planet. We apply our model to the two exoplanets with the shortest periods known to date, NGTS-10b and WASP-19b. We predict they will undergo orbital decay in time-scales that depend on the evolution of the tidal dissipation reservoir inside the star, as well as the contribution of the stellar convective envelope to the transfer of angular momentum. Contrary to previous work, which predicted mid-transit time shifts of ∼30 − 190 s over 10 years, we found that such changes would be smaller than 10 s. We note this is sensitive to the assumptions about the dissipative properties of the system. Our results have important implications for the search for observational evidence of orbital decay in USP planets, using present and future observational campaigns.


2019 ◽  
Vol 488 (3) ◽  
pp. 3568-3587 ◽  
Author(s):  
Bonan Pu ◽  
Dong Lai

ABSTRACT Recent studies suggest that ultra-short-period planets (USPs), Earth-sized planets with sub-day periods, constitute a statistically distinct sub-sample of Kepler planets: USPs have smaller radii (1–1.4R⊕) and larger mutual inclinations with neighbouring planets than nominal Kepler planets, and their period distribution is steeper than longer period planets. We study a ‘low-eccentricity’ migration scenario for the formation of USPs, in which a low-mass planet with initial period of a few days maintains a small but finite eccentricity due to secular forcings from exterior companion planets, and experiences orbital decay due to tidal dissipation. USP formation in this scenario requires that the initial multiplanet system have modest eccentricities (≳0.1) or angular momentum deficit. During the orbital decay of the innermost planet, the system can encounter several apsidal and nodal precession resonances that significantly enhance eccentricity excitation and increase the mutual inclination between the inner planets. We develop an approximate method based on eccentricity and inclination eigenmodes to efficiently evolve a large number of multiplanet systems over Gyr time-scales in the presence of rapid (as short as ∼100 yr) secular planet–planet interactions and other short-range forces. Through a population synthesis calculation, we demonstrate that the ‘low-e migration’ mechanism can naturally produce USPs from the large population of Kepler multis under a variety of conditions, with little fine-tuning of parameters. This mechanism favours smaller inner planets with more massive and eccentric companion planets, and the resulting USPs have properties that are consistent with observations.


2010 ◽  
Vol 6 (S276) ◽  
pp. 238-242
Author(s):  
Rosemary A. Mardling

AbstractThe equilibrium tide model in the weak friction approximation is used by the binary star and exoplanet communities to study the tidal evolution of short-period systems, however, each uses a slightly different approach which potentially leads to different conclusions about the timescales on which various processes occur. Here we present an overview of these two approaches, and show that for short-period planets the circularization timescales they predict differ by at most a factor of a few. A discussion of the timescales for orbital decay, spin-orbit synchronization and spin-orbit alignment is also presented.


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


1974 ◽  
Vol 22 ◽  
pp. 193-203
Author(s):  
L̆ubor Kresák

AbstractStructural effects of the resonance with the mean motion of Jupiter on the system of short-period comets are discussed. The distribution of mean motions, determined from sets of consecutive perihelion passages of all known periodic comets, reveals a number of gaps associated with low-order resonance; most pronounced are those corresponding to the simplest commensurabilities of 5/2, 2/1, 5/3, 3/2, 1/1 and 1/2. The formation of the gaps is explained by a compound effect of five possible types of behaviour of the comets set into an approximate resonance, ranging from quick passages through the gap to temporary librations avoiding closer approaches to Jupiter. In addition to the comets of almost asteroidal appearance, librating with small amplitudes around the lower resonance ratios (Marsden, 1970b), there is an interesting group of faint diffuse comets librating in characteristic periods of about 200 years, with large amplitudes of about±8% in μ and almost±180° in σ, around the 2/1 resonance gap. This transient type of motion appears to be nearly as frequent as a circulating motion with period of revolution of less than one half that of Jupiter. The temporary members of this group are characteristic not only by their appearance but also by rather peculiar discovery conditions.


1999 ◽  
Vol 173 ◽  
pp. 381-387
Author(s):  
M. Królikowska ◽  
G. Sitarski ◽  
S. Szutowicz

AbstractThe nongravitational motion of five “erratic” short-period comets is studied on the basis of published astrometric observations. We present the precession models which successfully link all the observed apparitions of the comets: 21P/Giacobini-Zinner, 31P/Schwassmann-Wachmann 2, 32P/Comas Solá, 37P/Forbes, and 43P/Wolf-Harrington. We used the Sekanina's forced precession model of the rotating cometary nucleus to include the nongravitational terms into equations of the comet's motion. Values of six basic parameters (four connected with the rotating comet nucleus and two describing the precession of spin-axis of the nucleus) have been determined along the orbital elements from positional observations of the comets. The solutions were derived with additional assumptions which introduce instantaneous changes of modulus of reactive force,Aand of maximum of cometary activity with respect to perihelion time. The present precession models impose some contraints on sizes and rotational periods of cometary nuclei. According to our solutions the nucleus of 21P/Giacobini-Zinner with oblateness along the spin-axis of about 0.32 (equatorial to polar radius of 1.46) is the most oblate among five investigated comets.


1999 ◽  
Vol 173 ◽  
pp. 365-370
Author(s):  
Kh.I. Ibadinov

AbstractFrom the established dependence of the brightness decrease of a short-period comet dependence on the perihelion distance of its orbit it follows that part of the surface of these cometary nuclei gradually covers by a refractory crust. The results of cometary nucleus simulation show that at constant insolation energy the crust thickness is proportional to the square root of the insolation time and the ice sublimation rate is inversely proportional to the crust thickness. From laboratory experiments resulted the thermal regime, the gas productivity of the nucleus, covering of the nucleus by the crust, and the tempo of evolution of a short-period comet into the asteroid-like body studied.


1999 ◽  
Vol 173 ◽  
pp. 327-338 ◽  
Author(s):  
J.A. Fernández ◽  
T. Gallardo

AbstractThe Oort cloud probably is the source of Halley-type (HT) comets and perhaps of some Jupiter-family (JF) comets. The process of capture of Oort cloud comets into HT comets by planetary perturbations and its efficiency are very important problems in comet ary dynamics. A small fraction of comets coming from the Oort cloud − of about 10−2− are found to become HT comets (orbital periods < 200 yr). The steady-state population of HT comets is a complex function of the influx rate of new comets, the probability of capture and their physical lifetimes. From the discovery rate of active HT comets, their total population can be estimated to be of a few hundreds for perihelion distancesq <2 AU. Randomly-oriented LP comets captured into short-period orbits (orbital periods < 20 yr) show dynamical properties that do not match the observed properties of JF comets, in particular the distribution of their orbital inclinations, so Oort cloud comets can be ruled out as a suitable source for most JF comets. The scope of this presentation is to review the capture process of new comets into HT and short-period orbits, including the possibility that some of them may become sungrazers during their dynamical evolution.


Sign in / Sign up

Export Citation Format

Share Document