scholarly journals Detection of a Cross-correlation between Cosmic Microwave Background Lensing and Low-density Points

2021 ◽  
Vol 923 (2) ◽  
pp. 153
Author(s):  
Fuyu Dong ◽  
Pengjie Zhang ◽  
Le Zhang ◽  
Ji Yao ◽  
Zeyang Sun ◽  
...  

Abstract Low-density points (LDPs), obtained by removing high-density regions of observed galaxies, can trace the large-scale structures (LSSs) of the universe. In particular, it offers an intriguing opportunity to detect weak gravitational lensing from low-density regions. In this work, we investigate the tomographic cross-correlation between Planck cosmic microwave background (CMB) lensing maps and LDP-traced LSSs, where LDPs are constructed from the DR8 data release of the DESI legacy imaging survey, with about 106–107 galaxies. We find that, due to the large sky coverage (20,000 deg2) and large redshift depth (z ≤ 1.2), a significant detection (10σ–30σ) of the CMB lensing–LDP cross-correlation in all six redshift bins can be achieved, with a total significance of ∼53σ over ℓ ≤ 1024. Moreover, the measurements are in good agreement with a theoretical template constructed from our numerical simulation in the WMAP 9 yr ΛCDM cosmology. A scaling factor for the lensing amplitude A lens is constrained to A lens = 1 ± 0.12 for z < 0.2, A lens = 1.07 ± 0.07 for 0.2 < z < 0.4, and A lens = 1.07 ± 0.05 for 0.4 < z < 0.6, with the r-band absolute magnitude cut of −21.5 for LDP selection. A variety of tests have been performed to check the detection reliability against variations in LDP samples and galaxy magnitude cuts, masks, CMB lensing maps, multipole ℓ cuts, sky regions, and photo-z bias. We also perform a cross-correlation measurement between CMB lensing and galaxy number density, which is consistent with the CMB lensing–LDP cross-correlation. This work therefore further convincingly demonstrates that LDP is a competitive tracer of LSS.

2005 ◽  
Vol 201 ◽  
pp. 65-70
Author(s):  
Robert F. Silverberg ◽  

We have developed a balloon-borne experiment to measure the Cosmic Microwave Background Radiation anisotropy on angular scales from ˜50° down to ˜20′. The instrument observes at frequencies between 150 and 690 GHz and will be flown on an Antarctic circumpolar long duration flight. To greatly improve the experiment performance, the front-end of the experiment is mounted on the top of the balloon. With high sensitivity, broad sky coverage, and well-characterized systematic errors, the results of this experiment can be used to strongly constrain cosmological models and probe the early stages of large-scale structure formation in the Universe.


2017 ◽  
Vol 45 ◽  
pp. 1760009 ◽  
Author(s):  
Wen Zhao ◽  
Larissa Santos

In both WMAP and Planck observations on the temperature anisotropy of cosmic microwave background (CMB) radiation a number of large-scale anomalies were discovered in the past years, including the CMB parity asymmetry in the low multipoles. By defining a directional statistics, we find that the CMB parity asymmetry is directional dependent, and the preferred axis is stable, which means that it is independent of the chosen CMB map, the definition of the statistic, or the CMB masks. Meanwhile, we find that this preferred axis strongly aligns with those of the CMB quadrupole, octopole, as well as those of other large-scale observations. In addition, all of them aligns with the CMB kinematic dipole, which hints to the non-cosmological origin of these directional anomalies in cosmological observations.


Daedalus ◽  
2014 ◽  
Vol 143 (4) ◽  
pp. 125-133
Author(s):  
David N. Spergel

We seem to live in a simple but strange universe. Our basic cosmological model fits a host of astronomical observations with only five basic parameters: the age of the universe, the density of atoms, the density of matter, the initial “lumpiness” of the universe, and a parameter that describes whether this lumpiness is more pronounced on smaller physical scales. Our observations of the cosmic microwave background fluctuations determine these parameters with uncertainties of only 1 to 2 percent. The same model also provides an excellent fit to the large-scale clustering of galaxies and gas, the properties of galaxy clusters, observations of gravitational lensing, and supernova-based measurements of the Hubble relation. This model implies that we live in a strange universe: atoms make up only 4 percent of the visible universe, dark matter makes up 24 percent, and dark energy – energy associated with empty space – makes up 72 percent.


2018 ◽  
Vol 27 (15) ◽  
pp. 1848005 ◽  
Author(s):  
Catherine Heymans ◽  
Gong-Bo Zhao

Observations of the evolution of large-scale structures in the Universe provides unique tools to confront Einstein’s theory of General Relativity on cosmological scales. We review weak gravitational lensing and galaxy clustering studies, discussing how these can be used in combination in order to constrain a range of different modified gravity theories. We argue that in order to maximise the future information gain from these probes, theoretical effort will be required in order to model the impact of beyond-Einstein gravity in the nonlinear regime of structure formation.


2020 ◽  
Vol 634 ◽  
pp. A81
Author(s):  
V. Bonjean

The Planck collaboration has extensively used the six Planck HFI frequency maps to detect the Sunyaev–Zel’dovich (SZ) effect with dedicated methods, for example by applying (i) component separation to construct a full-sky map of the y parameter or (ii) matched multi-filters to detect galaxy clusters via their hot gas. Although powerful, these methods may still introduce biases in the detection of the sources or in the reconstruction of the SZ signal due to prior knowledge (e.g. the use of the generalised Navarro, Frenk, and White profile model as a proxy for the shape of galaxy clusters, which is accurate on average but not for individual clusters). In this study, we use deep learning algorithms, more specifically, a U-net architecture network, to detect the SZ signal from the Planck HFI frequency maps. The U-net shows very good performance, recovering the Planck clusters in a test area. In the full sky, Planck clusters are also recovered, together with more than 18 000 other potential SZ sources for which we have statistical indications of galaxy cluster signatures, by stacking at their positions several full-sky maps at different wavelengths (i.e. the cosmic microwave background lensing map from Planck, maps of galaxy over-densities, and the ROSAT X-ray map). The diffuse SZ emission is also recovered around known large-scale structures such as Shapley, A399–A401, Coma, and Leo. Results shown in this proof-of-concept study are promising for potential future detection of galaxy clusters with low SZ pressure with this kind of approach, and more generally, for potential identification and characterisation of large-scale structures of the Universe via their hot gas.


Sign in / Sign up

Export Citation Format

Share Document