scholarly journals AstroSat Study of the Globular Cluster NGC 2298: Probable Evolutionary Scenarios of Hot Horizontal Branch Stars

2021 ◽  
Vol 923 (2) ◽  
pp. 162
Author(s):  
Sharmila Rani ◽  
Gajendra Pandey ◽  
Annapurni Subramaniam ◽  
Chul Chung ◽  
Snehalata Sahu ◽  
...  

Abstract We present the far-UV (FUV) photometry of images acquired with UVIT on AstroSat to probe the horizontal branch (HB) population of the Galactic globular cluster NGC 2298. UV-optical color–magnitude diagrams (CMDs) are constructed for member stars in combination with Hubble Space Telescope UV Globular Cluster Survey data for the central region and Gaia and ground-based photometric data for the outer region. A blue HB (BHB) sequence with a spread and four hot HB stars are detected in all FUV-optical CMDs and are compared with theoretical updated BaSTI isochrones and synthetic HB models with a range in helium abundance, suggesting that the hot HB stars are helium enhanced when compared to the BHB. The estimated effective temperature, radius, and luminosity of HB stars, using the best spectral energy distribution fits, were compared with various HB models. BHB stars span a temperature range from 7500 to 12,250 K. Three hot HB stars have 35,000–40,000 K, whereas one star has around ∼100,000 K. We suggest the following evolutionary scenarios: two stars are likely to be the progeny of extreme HB (EHB) stars formed through an early hot-flasher scenario, one is likely to be an EHB star with probable helium enrichment, and the hottest HB star, which is about to enter the white dwarf cooling phase, could have evolved from the BHB phase. Nevertheless, these are interesting spectroscopic targets to understand the late stages of evolution.

2021 ◽  
Vol 501 (2) ◽  
pp. 2140-2155
Author(s):  
Sharmila Rani ◽  
Gajendra Pandey ◽  
Annapurni Subramaniam ◽  
Snehalata Sahu ◽  
N Kameswara Rao

ABSTRACT We present UV photometry of the globular cluster NGC 1261 using images acquired with the Ultraviolet Imaging Telescope (UVIT) on board Astrosat. We performed point-spread function (PSF) photometry on four near-UV (NUV) and two far-UV (FUV) images and constructed UV colour–magnitude diagrams (CMDs), in combination with the Hubble Space Telescope (HST), Gaia, and ground-based optical photometry for member stars. We detected the full horizontal branch (HB) in the NUV and blue HB in the FUV and identified two extreme HB (EHB) stars. HB stars have a tight sequence in UV–optical CMDs, well fitted with isochrones generated (age 12.6 Gyr, [Fe/H] = −1.27 metallicity) using updated BaSTI-IAC models. Effective temperatures (Teff), luminosities, and radii of bright HB stars were estimated using the spectral energy distribution. As we detect the complete sample of UV-bright HB stars, the hot end of the HB distribution is found to terminate at the G-jump ($T_{\rm eff}\, \sim$ 11500 K). The two EHB stars, fitted well with single spectra, have Teff = 31000 K and a mass = 0.495 M⊙, and follow the same Teff–radius relation as the blue HB stars. We constrain the formation pathways of these EHB stars to extreme mass loss in the RGB phase (due either to rotation or enhanced helium) or a early hot-flash scenario.


2018 ◽  
Vol 613 ◽  
pp. A66
Author(s):  
G. Fontaine ◽  
M. Latour

We show that the recent realization that isolated post-extreme horizontal branch (post-EHB) stars are generally characterized by rotational broadening with values of V rot sini between 25 and 30 km s−1 can be explained as a natural consequence of the conservation of angular momentum from the previous He-core burning phase on the EHB. The progenitors of these evolved objects, the EHB stars, are known to be slow rotators with an average value of V rot sini of ~7.7 km s−1. This implies significant spin-up between the EHB and post-EHB phases. Using representative evolutionary models of hot subdwarf stars, we demonstrate that angular momentum conservation in uniformly rotating structures (rigid-body rotation) boosts that value of the projected equatorial rotation speed by a factor ~3.6 by the time the model has reached the region of the surface gravity-effective temperature plane where the newly-studied post-EHB objects are found. This is exactly what is needed to account for their observed atmospheric broadening. We note that the decrease of the moment of inertia causing the spin-up is mostly due to the redistribution of matter that produces more centrally-condensed structures in the post-EHB phase of evolution, not to the decrease of the radius per se.


1998 ◽  
Vol 495 (2) ◽  
pp. 796-803 ◽  
Author(s):  
M. M. Shara ◽  
L. Drissen ◽  
R. M. Rich ◽  
F. Paresce ◽  
I. R. King ◽  
...  

2019 ◽  
Vol 488 (3) ◽  
pp. 3857-3865
Author(s):  
L R Bedin ◽  
M Salaris ◽  
J Anderson ◽  
M Libralato ◽  
D Apai ◽  
...  

ABSTRACT We report on the white dwarf (WD) cooling sequence of the old globular cluster NGC 6752, which is chemically complex and hosts a blue horizontal branch. This is one of the last globular cluster WD cooling sequences accessible to imaging by the Hubble Space Telescope. Our photometry and completeness tests show that we have reached the peak of the luminosity function of the WD cooling sequence, at a magnitude mF606W  = 29.4 ± 0.1, which is consistent with a formal age of ∼14 Gyr. This age is also consistent with the age from fits to the main-sequence turn-off (13–14 Gyr), reinforcing our conclusion that we observe the expected accumulation of WDs along the cooling sequence.


Author(s):  
D. Carrasco ◽  
M. Trenti ◽  
S. Mutch ◽  
P. A. Oesch

AbstractThe luminosity function is a fundamental observable for characterising how galaxies form and evolve throughout the cosmic history. One key ingredient to derive this measurement from the number counts in a survey is the characterisation of the completeness and redshift selection functions for the observations. In this paper, we present GLACiAR, an open python tool available on GitHub to estimate the completeness and selection functions in galaxy surveys. The code is tailored for multiband imaging surveys aimed at searching for high-redshift galaxies through the Lyman-break technique, but it can be applied broadly. The code generates artificial galaxies that follow Sérsic profiles with different indexes and with customisable size, redshift, and spectral energy distribution properties, adds them to input images, and measures the recovery rate. To illustrate this new software tool, we apply it to quantify the completeness and redshift selection functions for J-dropouts sources (redshift z ~ 10 galaxies) in the Hubble Space Telescope Brightest of Reionizing Galaxies Survey. Our comparison with a previous completeness analysis on the same dataset shows overall agreement, but also highlights how different modelling assumptions for the artificial sources can impact completeness estimates.


1981 ◽  
Vol 93 ◽  
pp. 275-275
Author(s):  
V. Castellani

The occurrence of rotation in Globular Cluster stars has been suggested (see e.g. Renzini 1977) as a mechanism producing the observed colour spread in actual Horizontal Branches. If this is the case, canonical results on evolutionary properties of HB stars have to be revisited in order to account for rotation-driven structural variations: faster Main Sequence rotators delay the He flash increasing the mass-size Mc of the He core at the flash and loosing a greater amount of mass during the Red Giant stage.


1995 ◽  
Vol 164 ◽  
pp. 395-395
Author(s):  
J. Borissova ◽  
N. Spassova

CCD photometry of the halo cluster Pall in Thuan-Gunn system is presented. The color - magnitude diagrams (Fig. 1) show a well defined red horizontal branch, lower giant branch and main-sequence down to about two magnitudes below the main-sequence turnoff. The giant branch is absent and the brightest stars are horizontal-branch stars. The horizontal branch is composed of red stars only. The age of the cluster, determined by comparison with the isochrones of Bell and Vanden Berg (1987) is consistent with an age between 12 – 14 Gyr. and a metallicity [Fe/H] = −0.79. The observed luminosity function shows a deficiency of stars from about 0.5 mag below turnoff up to g = 21 mag. A distance modulus of (m – M)g0 = 15.35 ± 0.1 magnitude has been derived. An estimate of the cluster structural parameters gives rc = 1.7 pc and c = 1.46. A mass estimate of 1.6 × 103M⊙ and mass-to-light ratio 1.77 has been obtained, using King's (1966) method.


2020 ◽  
Vol 493 (1) ◽  
pp. 559-579 ◽  
Author(s):  
V Bourrier ◽  
P J Wheatley ◽  
A Lecavelier des Etangs ◽  
G King ◽  
T Louden ◽  
...  

ABSTRACT In this third paper of the MOVES (Multiwavelength Observations of an eVaporating Exoplanet and its Star) programme, we combine Hubble Space Telescope far-ultraviolet (FUV) observations with XMM–Newton/Swift X-ray observations to measure the emission of HD 189733 in various FUV lines, and its soft X-ray spectrum. Based on these measurements we characterize the interstellar medium towards HD 189733 and derive semisynthetic XUV spectra of the star, which are used to study the evolution of its high-energy emission at five different epochs. Two flares from HD 189733 are observed, but we propose that the long-term variations in its spectral energy distribution have the most important consequences for the environment of HD 189733b. Reduced coronal and wind activity could favour the formation of a dense population of Si2+ atoms in a bow-shock ahead of the planet, responsible for pre- and in-transit absorption measured in the first two epochs. In-transit absorption signatures are detected in the Lyman α line in the second, third, and fifth epochs, which could arise from the extended planetary thermosphere and a tail of stellar wind protons neutralized via charge-exchange with the planetary exosphere. We propose that increases in the X-ray irradiation of the planet, and decreases in its EUV irradiation causing lower photoionization rates of neutral hydrogen, favour the detection of these signatures by sustaining larger densities of H0 atoms in the upper atmosphere and boosting charge-exchanges with the stellar wind. Deeper and broader absorption signatures in the last epoch suggest that the planet entered a different evaporation regime, providing clues as to the link between stellar activity and the structure of the planetary environment.


2008 ◽  
Vol 4 (S252) ◽  
pp. 261-262
Author(s):  
O. Yaron ◽  
A. Kovetz ◽  
D. Prialnik

AbstractObservational and theoretical investigations, performed especially over the last two decades, have strongly attributed the far-UV upturn phenomenon to low-mass, small-envelope, He-burning stars in Extreme Horizontal Branch (EHB) and subsequent evolutionary phases.Using our new stellar evolution code – a code that follows through complete evolutionary tracks, Pre-MS to cooling WD – without any interruption or intervention, we are able to produce a wide array of EHB stars, lying at bluer (Teff ≥ 20,000 K) and less luminous positions on HRD, and also closely examine their post-HB evolution until the final cooling as White Dwarfs.HB morphology is a complex multiple parameter problem. Two leading players, which seem to possess the ability to affect considerably positions of HB, are those of: 1.Helium abundance, and 2.mass-loss efficiency on the first giant branch. We focus here on the latter; thus, EHB stars are produced in our calculations by increasing the mass-loss rate on the RGB, to a state where prior to reaching core He flash conditions, only a very small H-rich envelope remains. The core flash takes place at hotter positions on the HRD, sometimes while already descending on the WD cooling curve. We show preliminary results for a range of initial masses (MZAMS = 0.8 − 1.1 M⊙) and for metallicities covering both populations I and II (Z = 0.01 − 0.001). The [M,Z] combinations have been chosen such that the masses would be above and close to typical MS turnoff masses (e.g. the estimation of MTO ≃ 0.85 for NGC 2808), and also so that the ages at HB are of order of 10 ± 5 Gyr.


Sign in / Sign up

Export Citation Format

Share Document