scholarly journals Long and Short Fast Radio Bursts Are Different from Repeating and Nonrepeating Transients

2021 ◽  
Vol 923 (2) ◽  
pp. 230
Author(s):  
X. J. Li ◽  
X. F. Dong ◽  
Z. B. Zhang ◽  
D. Li

Abstract We collect 133 fast radio bursts (FRBs), including 110 nonrepeating and 23 repeating ones, and systematically investigate their observational properties. To check the frequency dependence of FRB classifications, we define our samples with a central frequency below/above 1 GHz as subsample I/II. First, we find that there is a clear bimodal distribution of pulse width for subsample I. If we classify FRBs into short FRBs (sFRBs; <100 ms) and long FRBs (lFRBs; >100 ms) as done for short and long gamma-ray bursts (GRBs), the sFRBs at higher central frequency are commonly shorter than those at lower central frequency not only for nonrepeating but also repeating sFRBs. Second, we find that fluence and peak flux density are correlated with a power-law relation of F ∝ S p , obs γ for both sFRBs and lFRBs whose distributions are obviously different. Third, the lFRBs with isotropic energies ranging from 1042 to 1044 erg are more energetic than the sFRBs in the F–DM EX plane, indicating that they are two representative types. Finally, it is interesting to note that the peak flux density behaves independently on the redshift when the distance of the FRBs becomes far enough, which is similar to the scenario of the peak flux evolving with redshift in the field of GRBs. We predict that fainter FRBs at a higher redshift of z > 2 can be successfully detected by FAST and the Square Kilometre Array in the near future.

2018 ◽  
Vol 2 (11) ◽  
pp. 832-835 ◽  
Author(s):  
S. R. Kulkarni

Author(s):  
A. Kumar ◽  
S. B. Pandey ◽  
R. Gupta ◽  
A. Aryan ◽  
A. J. Castro-Tirado ◽  
...  

Newly installed 3.6m DOT at Nainital (Uttarakhand) is a novel facility for the time domain astronomy. Because of the longitudinal advantage of India, it could be used to study new transients reported by a global network of robotic telescopes. Observations with the 4K × 4K CCD Imager at the axial port of the 3.6m DOT will be very helpful in the near future towards understanding the different physical aspects of time-critical events, e.g., Gamma-ray bursts (GRBs), Supernovae, Gravitational wave candidates, etc. Using the Imager with broadband filters (Bessel UBVRI and SDSS ugriz), ~6.5' × 6.5' images could be obtained to attempt various science goals in synergy with other multi-band facilities. In this study, we present an analysis of unpublished R-band data of GRB 171205A/SN 2017iuk spanning between ~12 to 105 days since burst, that observed using the 3.6m DOT with 4K × 4K CCD Imager. In the R-band light curve, a bump appears to start from ~3 days, which shows the peak at ~15 days after the burst, clearly indicates photometric evidence of association of SN with GRB 171205A.


2021 ◽  
pp. 2150200
Author(s):  
Revaz Beradze ◽  
Merab Gogberashvili ◽  
Lasha Pantskhava

In this paper, a brief analysis of repeated and overlapped gamma-ray bursts, fast radio bursts and gravitational waves is done. These signals may not be emitted by isolated cataclysmic events and we suggest interpreting some of them within the impenetrable black hole model, as the radiation reflected and amplified by the black hole horizons.


2020 ◽  
Vol 492 (3) ◽  
pp. 3622-3630
Author(s):  
Lin Lan ◽  
Rui-Jingi Lu ◽  
Hou-Jun Lü ◽  
Jun Shen ◽  
Jared Rice ◽  
...  

ABSTRACT Short gamma-ray bursts (GRB) with extended emission (EE) that are composed of an initial short hard spike followed by a long-lasting EE are thought to comprise a sucategory of short GRBs. The narrow energy band available during the Swift era, combined with a lack of spectral information, prevented the discovery of the intrinsic properties of these events. In this paper, we perform a systematic search of short GRBs with EE using all available Fermi/GBM data. The search identified 26 GBM-detected short GRBs with EE that are similar to GRB 060614 observed by Swift/BAT. We focus on investigating the spectral and temporal properties of both the hard spike and the EE component of all 26 GRBs, and explore differences and possible correlations between them. We find that while the peak energy (Ep) of the hard spikes is slightly harder than that of the EE, their fluences are comparable. The harder Ep seems to correspond to a larger fluence and peak flux, with a large scatter for both the hard spike and the EE component. Moreover, the Ep of both the hard spike and the EE are compared with other short GRBs. Finally, we also compare the properties of GRB 170817A with those of short GRBs with EE and find no significant statistical differences between them. We find that GRB 170817A has the lowest Ep, probably because it is off-axis.


2019 ◽  
Vol 71 (4) ◽  
Author(s):  
Norisuke Ohmori ◽  
Kazutaka Yamaoka ◽  
Makoto Yamauchi ◽  
Yuji Urata ◽  
Masanori Ohno ◽  
...  

Abstract We have systematically studied the spectral properties of 302 localized gamma-ray bursts (GRBs) observed by the Suzaku wide-band all-sky monitor (WAM) from 2005 August to 2010 December. The energy spectra in the 100–5000 keV range integrated over the entire emission and the 1 s peak were fitted by three models: a single power law, a power law with an exponential cutoff (CPL), and the GRB Band function (GRB). Most of the burst spectra were well fitted by a single power law. The average photon index α was −2.11 and −1.73 for long and short bursts, respectively. For the CPL and GRB models, the low-energy and high-energy photon indices (α and β) for the entire emission spectra were consistent with previous measurements. The averages of the α and β were −0.90 and −2.65 for long-duration GRBs, while the average α was −0.55 and the β was not well constrained for short-duration GRBs. However, the average peak energy Epeak was 645 and 1286 keV for long- and short-duration GRBs respectively, which are higher than previous Fermi/GBM measurements (285 keV and 736 keV). The α and Epeak of the 1 s peak spectra were larger, i.e., the spectra were harder, than the total fluence spectra. Spectral simulations based on Fermi-GBM results suggest that the higher Epeaks measured by the Suzaku WAM could be due to detector selection bias, mainly caused by the limited energy range above 100 keV.


2018 ◽  
Vol 481 (2) ◽  
pp. 2407-2426 ◽  
Author(s):  
Ben Margalit ◽  
Brian D Metzger ◽  
Edo Berger ◽  
Matt Nicholl ◽  
Tarraneh Eftekhari ◽  
...  

2019 ◽  
Vol 490 (1) ◽  
pp. 927-946 ◽  
Author(s):  
J Michael Burgess ◽  
Jochen Greiner ◽  
Damien Bégué ◽  
Franceso Berlato

ABSTRACT Inspired by the confirmed detection of a short gamma-ray burst (GRB) in association with a gravitational wave signal, we present the first Bayesian Fermi-Gamma-ray Burst Monitor (GBM) short GRB spectral catalogue. Both peak flux and time-resolved spectral results are presented. Data are analysed with the proper Poisson likelihood allowing us to provide statistically reliable results even for spectra with few counts. All fits are validated with posterior predictive checks. We find that nearly all spectra can be modelled with a cut-off power law. Additionally, we release the full posterior distributions and reduced data from our sample. Following our previous study, we introduce three variability classes based on the observed light-curve structure.


2012 ◽  
Vol 8 (S291) ◽  
pp. 502-504
Author(s):  
T. V. Smirnova

AbstractWe investigated pulse intensities of PSR B0950+08 at 112 MHz at various longitudes (phases) and detected very strong pulses exceeding the amplitude of the mean profile by more than one hundred times. The maximum peak flux density of a recorded pulse is 15240 Jy, and the energy of this pulse exceeds the mean pulse energy by a factor of 153. The analysis shows that the cumulative distribution function (CDF) of pulse intensities at the longitudes of the main pulse is described by a piece-wise power law, with a slope changing from n=−1.25 ± 0.04 to n=−1.84 ± 0.07 at I≥600 Jy. The CDF for pulses at the longitudes of the precursor has a power law with n=−1.5 ± 0.1. Detected giant pulses from this pulsar have the same signature as giant pulses of other pulsars.


Sign in / Sign up

Export Citation Format

Share Document