scholarly journals Radio Proper Motions of the Energetic Pulsar PSR J1813–1749

2021 ◽  
Vol 923 (2) ◽  
pp. 228
Author(s):  
Sergio A. Dzib ◽  
Luis F. Rodríguez

Abstract PSR J1813–1749 has peculiarities that make it a very interesting object of study. It is one of the most energetic and the most scattered pulsars known. It is associated with HESS J1813–178, one of the brightest and most compact TeV sources in the sky. Recently, Ho et al. used archival X-ray Chandra observations separated by more than 10 yr and determined that the total proper motion of PSR J1813–1749 is ∼66 mas yr−1, corresponding to a velocity of ∼1900 km s−1 for a distance of 6.2 kpc. These results would imply that this pulsar is the fastest neutron star known in the Galaxy and, by estimating the angular separation with respect to the center of the associated supernova remnant, has an age of only ∼300 yr, making it one of the youngest pulsars known. Using archival high angular resolution VLA observations taken over 12 yr we have estimated the radio proper motions of PSR J1813–1748 to be much smaller: ( μ α · cos ( δ ) , μ δ ) = (−5.0 ± 3.7, −13.2 ± 6.7) mas yr−1, or a total proper motion of 14.8 ± 5.9 mas yr−1. The positions referenced against quasars make our results reliable. We conclude that PSR J1813–1749 is not a very fast moving source. Its kinematic age using the new total proper motion is ∼1350 yr. This age is consistent within a factor of a few with the characteristic age of the pulsar and with the age estimated from the broadband spectral energy distribution of HESS J1813–178, as well as the age of the associated supernova remnant.

2019 ◽  
Vol 626 ◽  
pp. L2 ◽  
Author(s):  
S. Facchini ◽  
E. F. van Dishoeck ◽  
C. F. Manara ◽  
M. Tazzari ◽  
L. Maud ◽  
...  

The large majority of protoplanetary disks have very compact continuum emission (≲15 AU) at millimeter wavelengths. However, high angular resolution observations that resolve these small disks are still lacking, due to their intrinsically fainter emission compared with large bright disks. In this Letter we present 1.3 mm ALMA data of the faint disk (∼10 mJy) orbiting the TTauri star CX Tau at a resolution of ∼40 mas, ∼5 AU in diameter. The millimeter dust disk is compact, with a 68% enclosing flux radius of 14 AU, and the intensity profile exhibits a sharp drop between 10 and 20 AU, and a shallow tail between 20 and 40 AU. No clear signatures of substructure in the dust continuum are observed, down to the same sensitivity level of the DSHARP large program. However, the angular resolution does not allow us to detect substructures on the scale of the disk aspect ratio in the inner regions. The radial intensity profile closely resembles the inner regions of more extended disks imaged at the same resolution in DSHARP, but with no rings present in the outer disk. No inner cavity is detected, even though the disk has been classified as a transition disk from the spectral energy distribution in the near-infrared. The emission of 12CO is much more extended, with a 68% enclosing flux radius of 75 AU. The large difference of the millimeter dust and gas extents (> 5) strongly points to radial drift, and closely matches the predictions of theoretical models.


2021 ◽  
Vol 923 (1) ◽  
pp. 5
Author(s):  
Yuma Sugahara ◽  
Akio K. Inoue ◽  
Takuya Hashimoto ◽  
Satoshi Yamanaka ◽  
Seiji Fujimoto ◽  
...  

Abstract We present new Atacama Large Millimeter/submillimeter Array Band 7 observational results of a Lyman-break galaxy at z = 7.15, B14-65666 (“Big Three Dragons”), which is an object detected in [O iii] 88 μm, [C ii] 158 μm, and dust continuum emission during the epoch of reionization. Our targets are the [N ii] 122 μm fine-structure emission line and the underlying 120 μm dust continuum. The dust continuum is detected with a ∼19σ significance. From far-infrared spectral energy distribution sampled at 90, 120, and 160 μm, we obtain a best-fit dust temperature of 40 K (79 K) and an infrared luminosity of log 10 ( L IR / L ⊙ ) = 11.6 (12.1) at the emissivity index β = 2.0 (1.0). The [N ii] 122 μm line is not detected. The 3σ upper limit of the [N ii] luminosity is 8.1 × 107 L ⊙. From the [N ii], [O iii], and [C ii] line luminosities, we use the Cloudy photoionization code to estimate nebular parameters as functions of metallicity. If the metallicity of the galaxy is high (Z > 0.4 Z ⊙), the ionization parameter and hydrogen density are log 10 U ≃ − 2.7 ± 0.1 and n H ≃ 50–250 cm−3, respectively, which are comparable to those measured in low-redshift galaxies. The nitrogen-to-oxygen abundance ratio, N/O, is constrained to be subsolar. At Z < 0.4 Z ⊙, the allowed U drastically increases as the assumed metallicity decreases. For high ionization parameters, the N/O constraint becomes weak. Finally, our Cloudy models predict the location of B14-65666 on the BPT diagram, thereby allowing a comparison with low-redshift galaxies.


2021 ◽  
Vol 21 (10) ◽  
pp. 260
Author(s):  
Cheng Cheng ◽  
Jia-Sheng Huang ◽  
Hai Xu ◽  
Gao-Xiang Jin ◽  
Chuan He ◽  
...  

Abstract The Spitzer Extended Deep Survey (SEDS) as a deep and wide mid-infrared (MIR) survey project provides a sample of 500 000+ sources spreading 1.46 square degree and a depth of 26 AB mag (3σ). Combining with the previous available data, we build a PSF-matched multi-wavelength photometry catalog from u band to 8 μm. We fit the SEDS galaxies spectral energy distributions by the local galaxy templates. The results show that the SEDS galaxy can be fitted well, indicating the high redshift galaxy (z ∼ 1) shares the same templates with the local galaxies. This study would facilitate the further study of the galaxy luminosity and high redshift mass function.


2019 ◽  
Vol 631 ◽  
pp. A38 ◽  
Author(s):  
S. Lianou ◽  
P. Barmby ◽  
A. A. Mosenkov ◽  
M. Lehnert ◽  
O. Karczewski

Aims. We derived the dust properties for 753 local galaxies and examine how these relate to some of their physical properties. We present the derived dust emission properties, including model spectral energy distribution (SEDs), star formation rates (SFRs) and stellar masses, as well as their relations. Methods. We modelled the global dust-SEDs for 753 galaxies, treated statistically as an ensemble within a hierarchical Bayesian dust-SED modelling approach, so as to derive their infrared (IR) emission properties. To create the observed dust-SEDs, we used a multi-wavelength set of observations, ranging from near-IR to far-IR-to-submillimeter wavelengths. The model-derived properties are the dust masses (Mdust), the average interstellar radiation field intensities (Uav), the mass fraction of very small dust grains (“QPAH” fraction), as well as their standard deviations. In addition, we used mid-IR observations to derive SFR and stellar masses, quantities independent of the dust-SED modelling. Results. We derive distribution functions of the properties for the galaxy ensemble and as a function of galaxy type. The mean value of Mdust for the early-type galaxies (ETGs) is lower than that for the late-type and irregular galaxies (LTGs and Irs, respectively), despite ETGs and LTGs having stellar masses spanning across the whole range observed. The Uav and “QPAH” fraction show no difference among different galaxy types. When fixing Uav to the Galactic value, the derived “QPAH” fraction varies across the Galactic value (0.071). The specific SFR increases with galaxy type, while this is not the case for the dust-specific SFR (SFR/Mdust), showing an almost constant star formation efficiency per galaxy type. The galaxy sample is characterised by a tight relationship between the dust mass and the stellar mass for the LTGs and Irs, while ETGs scatter around this relation and tend towards smaller dust masses. While the relation indicates that Mdust may fundamentally be linked to M⋆, metallicity and Uav are the second parameter driving the scatter, which we investigate in a forthcoming work. We used the extended Kennicutt–Schmidt (KS) law to estimate the gas mass and the gas-to-dust mass ratio (GDR). The gas mass derived from the extended KS law is on average ∼20% higher than that derived from the KS law, and a large standard deviation indicates the importance of the average star formation present to regulate star formation and gas supply. The average GDR for the LTGs and Irs is 370, and including the ETGs gives an average of 550.


2012 ◽  
Vol 8 (S295) ◽  
pp. 319-319
Author(s):  
Xiyan Peng ◽  
Cuihua Du ◽  
Zhenyu Wu

AbstractBased on BATC and SDSS photometric data, we adopt the spectral energy distribution (SED) fitting method to evaluate stellar metallicities in the Galaxy. We find that the mean metallicity shifts from metal-rich to metal-poor with the increase of distance from the Galactic Centre.


2020 ◽  
Vol 494 (2) ◽  
pp. 2538-2560 ◽  
Author(s):  
J M M Neustadt ◽  
T W-S Holoien ◽  
C S Kochanek ◽  
K Auchettl ◽  
J S Brown ◽  
...  

ABSTRACT We present the discovery of ASASSN-18jd (AT 2018bcb), a luminous optical/ultraviolet(UV)/X-ray transient located in the nucleus of the galaxy 2MASX J22434289–1659083 at z = 0.1192. Over the year after discovery, Swift UltraViolet and Optical Telescope (UVOT) photometry shows the UV spectral energy distribution of the transient to be well modelled by a slowly shrinking blackbody with temperature $T \sim 2.5 \times 10^{4} \, {\rm K}$, a maximum observed luminosity of $L_{\rm max} = 4.5^{+0.6}_{-0.3}\times 10^{44} \, {\rm erg \,s}^{-1}$, and a radiated energy of $E = 9.6^{+1.1}_{-0.6} \times 10^{51} \, {\rm erg}$. X-ray data from Swift X-Ray Telescope (XRT) and XMM–Newton show a transient, variable X-ray flux with blackbody and power-law components that fade by nearly an order of magnitude over the following year. Optical spectra show strong, roughly constant broad Balmer emission and transient features attributable to He ii, N iii–v, O iii, and coronal Fe. While ASASSN-18jd shares similarities with tidal disruption events (TDEs), it is also similar to the newly discovered nuclear transients seen in quiescent galaxies and faint active galactic nuclei (AGNs).


1996 ◽  
Vol 175 ◽  
pp. 588-590
Author(s):  
D. Villani ◽  
S. Di Serego Alighieri

Stellar populations of high redshift radio galaxies (HzRG) (z up to 4.2) are the oldest stellar systems known, that is the ones formed at the earliest cosmological epochs. Therefore they are the best objects for providing us with information about the epoch of galaxy formation. The information on the stellar populations in HzRG are obtained from the study of their Integrated Spectral Energy Distribution (ISED) which are gathered both from spectra and integrated magnitudes. The most common approach for the interpretation of colors and spectral features of the energy distribution of galaxies is the Evolutionary Population Synthesis (EPS), which has been introduced for the first time by Tinsley in 1972. EPS models have often been used in the past to interpret the ISED of HzRG (Chambers & Charlot 1990; Lilly & Longair 1984; di Serego Alighieri et al. 1994) in order to draw conclusions on the age of the stellar populations and therefore on the epoch of galaxy formation. The results are sometimes conflicting and a number of very recent EPS models have become available (Bressan et al. 1995; Bruzual & Charlot 1993; Buzzoni 1989; Guiderdoni & Rocca-Volmerange 1987): we are therefore analysing the differences between the various EPS models with the aim of assessing their suitability to study the stellar population at early epochs. The EPS models assume for stars a given Initial Mass Function(IMF) as well as a Star Formation Rate (SFR). Then one can compute the number of stars with given mass present in the galaxy as a function of time. The position of each star in the HR diagram is determined by means of the isochrones, which are calculated from stellar evolutionary models. The ISED of a galaxy is obtained from the superposition of the spectra of single stars obtained from a stellar spectral library. Thus these models describe the galaxy ISED as a function of the time, giving a complete evolutionary picture.


2003 ◽  
Vol 211 ◽  
pp. 185-186
Author(s):  
M. J. Schwartz ◽  
E. E. Becklin ◽  
B. Zuckerman

We present preliminary results from a deep near-infrared J-band and I-band photometric survey of the Pleiades for freely-floating superplanets and brown dwarfs (BD) near the deuterium burning limit (DBL). With limiting magnitudes of J=20.5 and I=23.5, we have selected candidate Pleiads on the basis of evolutionary tracks, color-magnitudes, and I-J color lower limits (non-detections at deep I-band). Likelihoods of membership will be ultimately determined by a combination of image profile analysis, spectral energy distribution, proper motion, and low-resolution measurements of near-infrared water and/or methane absorption slopes. If confirmed, our faintest candidates are predicted to have made the transition from L to T spectral types with temperatures down to 820 K, and masses approaching 10 MJup.


1995 ◽  
Vol 164 ◽  
pp. 405-405 ◽  
Author(s):  
R.-D. Scholz ◽  
S. Hirte ◽  
M.J. Irwin ◽  
M. Odenkirchen

From measurements of Tautenburg Schmidt plates with the APM facility in Cambridge we obtained absolute proper motions of the Galactic globular clusters M 3 and M 92 directly with respect to large numbers of background galaxies (Scholz et al. 1993, 1994). We have extended our work to the dSphs in Draco and Ursa Minor (Scholz & Irwin 1994) and to other Galactic globular clusters using Tautenburg, Palomar and UK Schmidt plates. Combining our absolute proper motion of a cluster with its known radial velocity and distance (using common parameters of the solar motion) we derive the cluster orbit in the Galaxy (cf. Odenkirchen & Brosche 1992).


1990 ◽  
Vol 141 ◽  
pp. 427-429
Author(s):  
Kavan U. Ratnatunga

The IAS-Galaxy model (Ratnatunga, Bahcall and Casertano 1989) is a software interface between theoretical models of the Galaxy and observed kinematic distributions. It has been developed for analysis of many kinematic catalogs to study global galactic structure. In addition, the IASG model can be used to estimate corrections needed to derive absolute parallax and absolute proper motion by evaluating, on a star-by-star basis, the expected mean motion of the reference stars.A theoretical Galaxy model is defined on an inertial coordinate frame. Proper motions are measured in a reference frame defined by a fundamental catalog. The observed distribution of proper motions in star catalogs can be directly compared with the expected distributions evaluated using IASG to check the accuracy of the adopted reference frame in realizing the inertial coordinate frame in the sky.


Sign in / Sign up

Export Citation Format

Share Document