scholarly journals Construction of a Second-order Six-dimensional Hamiltonian-conserving Scheme

2021 ◽  
Vol 257 (2) ◽  
pp. 40
Author(s):  
Shiyang Hu ◽  
Xin Wu ◽  
Enwei Liang

Abstract Research has analytically shown that the energy-conserving implicit nonsymplectic scheme of Bacchini, Ripperda, Chen, and Sironi provides a first-order accuracy to numerical solutions of a six-dimensional conservative Hamiltonian system. Because of this, a new second-order energy-conserving implicit scheme is proposed. Numerical simulations of a galactic model hosting a BL Lacertae object and magnetized rotating black hole background support these analytical results. The new method with appropriate time steps is used to explore the effects of varying the parameters on the presence of chaos in the two physical models. Chaos easily occurs in the galactic model as the mass of the nucleus, the internal perturbation parameter, and the anisotropy of the potential of the elliptical galaxy increase. The dynamics of charged particles around the magnetized Kerr spacetime is easily chaotic for larger energies of the particles, smaller initial angular momenta of the particles, and stronger magnetic fields. The chaotic properties are not necessarily weakened when the black-hole spin increases. The new method can be used for any six-dimensional Hamiltonian problems, including globally hyperbolic spacetimes with readily available (3 + 1) split coordinates.

2021 ◽  
Vol 503 (4) ◽  
pp. 5984-5996
Author(s):  
Mark D Smith ◽  
Martin Bureau ◽  
Timothy A Davis ◽  
Michele Cappellari ◽  
Lijie Liu ◽  
...  

ABSTRACT Supermassive black hole (SMBH) masses can be measured by resolving the dynamical influences of the SMBHs on tracers of the central potentials. Modern long-baseline interferometers have enabled the use of molecular gas as such a tracer. We present here Atacama Large Millimeter/submillimeter Array observations of the elliptical galaxy NGC 7052 at 0${^{\prime\prime}_{.}}$11 ($37\,$pc) resolution in the 12CO(2-1) line and $1.3\,$ mm continuum emission. This resolution is sufficient to resolve the region in which the potential is dominated by the SMBH. We forward model these observations, using a multi-Gaussian expansion of a Hubble Space Telescope F814W image and a spatially constant mass-to-light ratio to model the stellar mass distribution. We infer an SMBH mass of $2.5\pm 0.3\times 10^{9}\, \mathrm{M_\odot }$ and a stellar I-band mass-to-light ratio of $4.6\pm 0.2\, \mathrm{M_\odot /L_{\odot ,I}}$ (3σ confidence intervals). This SMBH mass is significantly larger than that derived using ionized gas kinematics, which however appears significantly more kinematically disturbed than the molecular gas. We also show that a central molecular gas deficit is likely to be the result of tidal disruption of molecular gas clouds due to the strong gradient in the central gravitational potential.


Author(s):  
Yan Tian

AbstractIn this paper, we provide further illustrations of prolate interpolation and pseudospectral differentiation based on the barycentric perspectives. The convergence rates of the barycentric prolate interpolation and pseudospectral differentiation are derived. Furthermore, we propose the new preconditioner, which leads to the well-conditioned prolate collocation scheme. Numerical examples are included to show the high accuracy of the new method. We apply this approach to solve the second-order boundary value problem and Helmholtz problem.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Panos Betzios ◽  
Nava Gaddam ◽  
Olga Papadoulaki

Abstract We describe a unitary scattering process, as observed from spatial infinity, of massless scalar particles on an asymptotically flat Schwarzschild black hole background. In order to do so, we split the problem in two different regimes governing the dynamics of the scattering process. The first describes the evolution of the modes in the region away from the horizon and can be analysed in terms of the effective Regge-Wheeler potential. In the near horizon region, where the Regge-Wheeler potential becomes insignificant, the WKB geometric optics approximation of Hawking’s is replaced by the near-horizon gravitational scattering matrix that captures non-perturbative soft graviton exchanges near the horizon. We perform an appropriate matching for the scattering solutions of these two dynamical problems and compute the resulting Bogoliubov relations, that combines both dynamics. This allows us to formulate an S-matrix for the scattering process that is manifestly unitary. We discuss the analogue of the (quasi)-normal modes in this setup and the emergence of gravitational echoes that follow an original burst of radiation as the excited black hole relaxes to equilibrium.


2009 ◽  
Vol 60 (2) ◽  
pp. 169-173 ◽  
Author(s):  
Sayan K. Chakrabarti ◽  
Pulak Ranjan Giri ◽  
Kumar S. Gupta

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Darae Jeong ◽  
Yibao Li ◽  
Chaeyoung Lee ◽  
Junxiang Yang ◽  
Yongho Choi ◽  
...  

In this paper, we propose a verification method for the convergence rates of the numerical solutions for parabolic equations. Specifically, we consider the numerical convergence rates of the heat equation, the Allen–Cahn equation, and the Cahn–Hilliard equation. Convergence test results show that if we refine the spatial and temporal steps at the same time, then we have the second-order convergence rate for the second-order scheme. However, in the case of the first-order in time and the second-order in space scheme, we may have the first-order or the second-order convergence rates depending on starting spatial and temporal step sizes. Therefore, for a rigorous numerical convergence test, we need to perform the spatial and the temporal convergence tests separately.


2016 ◽  
Vol 26 (06) ◽  
pp. 1750046
Author(s):  
Yan Peng ◽  
Tao Chen ◽  
Guohua Liu ◽  
Pengwei Ma

We generalize the holographic superconductor model with dark matter sector by including the Stückelberg mechanism in the four-dimensional anti-de Sitter (AdS) black hole background away from the probe limit. We study effects of the dark matter sector on the [Formula: see text]-wave scalar condensation and find that the dark matter sector affects the critical phase transition temperature and also the order of phase transitions. At last, we conclude that the dark matter sector brings richer physics in this general metal/superconductor system.


2008 ◽  
Vol 616 ◽  
pp. 327-356 ◽  
Author(s):  
BRIAN L. WHITE ◽  
KARL R. HELFRICH

A steady theory is presented for gravity currents propagating with constant speed into a stratified fluid with a general density profile. Solution curves for front speed versus height have an energy-conserving upper bound (the conjugate state) and a lower bound marked by the onset of upstream influence. The conjugate state is the largest-amplitude nonlinear internal wave supported by the ambient stratification, and in the limit of weak stratification approaches Benjamin's energy-conserving gravity current solution. When the front speed becomes critical with respect to linear long waves generated above the current, steady solutions cannot be calculated, implying upstream influence. For non-uniform stratification, the critical long-wave speed exceeds the ambient long-wave speed, and the critical-Froude-number condition appropriate for uniform stratification must be generalized. The theoretical results demonstrate a clear connection between internal waves and gravity currents. The steady theory is also compared with non-hydrostatic numerical solutions of the full lock release initial-value problem. Some solutions resemble classic gravity currents with no upstream disturbance, but others show long internal waves propagating ahead of the gravity current. Wave generation generally occurs when the stratification and current speed are such that the steady gravity current theory fails. Thus the steady theory is consistent with the occurrence of either wave-generating or steady gravity solutions to the dam-break problem. When the available potential energy of the dam is large enough, the numerical simulations approach the energy-conserving conjugate state. Existing laboratory experiments for intrusions and gravity currents produced by full-depth lock exchange flows over a range of stratification profiles show excellent agreement with the conjugate state solutions.


1994 ◽  
Vol 73 (19) ◽  
pp. 2521-2523 ◽  
Author(s):  
A. Ghosh ◽  
P. Mitra

Sign in / Sign up

Export Citation Format

Share Document