scholarly journals Synthesis of gentamicin functionalized magnetic nano-particles and its antimicrobial activity

Author(s):  
Proma Bhattacharya ◽  
Sudarsan Neogi
2001 ◽  
Vol 32 ◽  
pp. 385-386
Author(s):  
TH. KAUFFELDT ◽  
E. KAUFFELDT ◽  
T. ZARUTSKAYA ◽  
M. SHAPIRO ◽  
A. SCHMIDT-OTT

2016 ◽  
Vol 513 ◽  
pp. 68-76 ◽  
Author(s):  
H. Rahnama ◽  
A. Sattarzadeh ◽  
F. Kazemi ◽  
N. Ahmadi ◽  
F. Sanjarian ◽  
...  

2012 ◽  
Vol 501 ◽  
pp. 309-313 ◽  
Author(s):  
Siti Nurdalila Abd-Ghani ◽  
Roslan Abd-Shukor ◽  
Wei Kong

The effects of nano particles Fe3O4 addition on the superconducting and transport properties of YBa2Cu3O7-δ (YBCO) were studied. YBa2Cu3O7-δ superconductor powders were prepared by using high purity oxide powders via solid state reaction method. Nano Fe3O4 with 0.01 – 0.05 wt.% with average size 28 nm was added into YBCO. The transition temperatures (Tc) of the samples were measured by using four point probe method. The critical current (Ic) of the samples has been determined by using the 1 μV/cm criterion from 30 – 77 K. Sample with 0.02 wt.% nano Fe3O4 showed the highest Tc at 87 K. It is interesting to note the same sample also exhibited the highest Jc at 77 K up to 1683 mA/cm2. Nano Fe3O4 has acted as effective flux pinning centers in YBCO. A small amount of nano particles Fe3O4 addition has successfully improved the superconducting and transport properties of YBCO. The excessive addition of nano Fe3O4 (> 0.02 wt.%) suppressed the Tc and Jc. Overall, Jc decreases with increasing temperature (30 – 77 K) as a consequence of thermally activated flux creep. Magnetic impurities normally suppress superconductivity. However, by adding magnetic nano particles, current carrying capacity of superconductors YBCO was enhanced significantly.


Author(s):  
A. O. Akintola ◽  
A. M. Azeez ◽  
B. D. Kehinde ◽  
I. C. Oladipo

Silver nano particles (AgNPs) were green synthesized using Adansonia digitata leaf extract. The synthesized silver nano particles were characterized in terms of synthesis, size, shape, morphology and capping functionalities by UV-Visible Spectroscopy, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). Antimicrobial activity of the synthesized silver nano particles was investigated by well diffusion method. The antibacterial activity of the nano particle was studied against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeurigunosa, Salmonella typhi and Klebsiella pneumonae while the antifungal activity was studied against Candida albicans, Aspergillus niger, Penicillum notatum and Rhizopus stolomifer. The synthesized AgNPs was active against all the studied microorganisms. Staphylococcus aureus was the most susceptible bacterium (inhibition zones ranging from 12.00 to 28.00 mm, MIC: 30 µl, MBC: 50 µl) while Aspergillus niger was the most susceptible fungi (inhibition zones ranging from 10.00 to 18.00 mm, MIC: 90 µl, MFC: 120 µl. In conclusion the synthesized silver nanoparticles was found to have antimicrobial activity against the pathogenic bacteria and fungi tested and hence has a great potential in biomedical application for the treatment of microbial infections.


2012 ◽  
Vol 248 ◽  
pp. 594-598
Author(s):  
Gang Zhao ◽  
Hai Rong Cui ◽  
Qiu Li Ding ◽  
Xu Feng Wang ◽  
Shi Xi Tian ◽  
...  

Series ferrofluid based sensors are novel sensors which use ferrofluid as inductive core to measure signals. The physical properties of ferrofluid affect mostly on performance parameter of these series sensors. There is several generality regularity for ferrofluid appliedd in series sensors. This paper analyses the generality of parameter controlling for properties of ferrofluid used in series ferrofluid sensors. The working area of magnetization curve of ferrofluid used in series sensors should be in its linear area where the permeability of ferrofluid is considered as a constant. The magnetic nano-particles generally obtained by reaction of ferrous chloride and ferric chloride. With the increment of viscosity and density of ferrofluid, the saturation magnetic intensity of ferrofluid increases. The concentration of reacted solution is better to be 0.6mol/L. Saturation magnet intensity of magnetic nano-partcles is highest as the molar ratio of trivalent iron ion to bivalent iron ion is equal to 1.75. The reacted temperature is better between 65~80°C while PH value of solution is in a weak alkaline state.


2011 ◽  
Vol 21 (3) ◽  
pp. 2250-2253 ◽  
Author(s):  
W. K. Tseng ◽  
J. J. Chieh ◽  
S. Y. Yang ◽  
H. E. Horng ◽  
C. Y. Hong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document