scholarly journals Vitamin D Status, Insulin Resistance, Leptin-To-Adiponectin Ratio in Adolescents: Results of a 1-Year Lifestyle Intervention

2016 ◽  
Vol 4 (4) ◽  
pp. 596-602 ◽  
Author(s):  
Christine Rambhojan ◽  
Laurent Larifla ◽  
Josiane Clepier ◽  
Elodie Bouaziz-Amar ◽  
Fritz-Line Velayoudom-Cephise ◽  
...  

AIM: We aimed to study the relationships between circulating 25-hydroxyvitamin D [25(OH)D], insulin resistance and leptin-to-adiponectin (L/A) ratio in Guadeloupean children and adolescents and to analyse the changes in 25(OH)D levels after a 1-year lifestyle intervention program.METHODS: 25(OH)D concentrations were measured via a chemiluminescence assay. Cardiometabolic risk factors, homoeostasis model assessment of insulin resistance (HOMA-IR), and adipokines were measured. The lifestyle intervention included dietary counselling, regular physical activity.RESULTS: Among 117 girls and boys (11–15 years old, 31.6% obese), 40% had vitamin D deficiency (25(OH)D levels < 20 ng/mL). With linear regression models where 25(OH)D and HOMA-IR acted as independent variables and age, sex, BMI, L/A ratio as covariates, 25(OH)D was significantly associated with HOMA-IR alone (P = 0.036). HOMA-IR was also associated with BMI z-score ≥ 2, L/A ratio and an interaction term BMI z-score ≥ 2*L/A ratio (P < 0.001 for all). After one year, in 78 children/adolescent, mean serum 25(OH)D increased significantly from 21.4 ± 4.9 ng/mL at baseline to 23.2 ± 6.0 after 1 year; P = 0.003 whereas BMI z-score, HOMA-IR and L/A ratio decreased significantly (P = 0.003, P < 0.001 and P = 0.012; respectively).CONCLUSION: The association between 25(OH)D and HOMA-IR, independently of obesity and the high prevalence of vitamin D deficiency should be considered in order to prevent the later incidence of T2DM. A healthy lifestyle including non-sedentary and outdoor activities could be a way for improving vitamin D status.

Author(s):  
Sonsoles Gutiérrez Medina ◽  
Teresa Gavela-Pérez ◽  
María Nieves Domínguez-Garrido ◽  
Elisa Gutiérrez-Moreno ◽  
Adela Rovira ◽  
...  

Abstract: Puberty can affect vitamin D levels.The goal of this study was to analyze the relation between vitamin D deficiency and puberty in obese Spanish children, along with the possible interrelation between vitamin D status and degree of insulin resistance.A cross-sectional study was carried out, in which clinical and biochemical data were gathered from 120 obese and 50 normal weight children between January 2011 and January 2013.: Mean vitamin D levels were 19.5 and 31.6 ng/mL in obese pubertal and obese prepubertal children, respectively. About 75% of the obese pubertal subjects and 46% of the obese prepubertal subjects had vitamin D deficiency. Vitamin D levels were significantly lower in pubescent subjects compared with pre-pubescent subjects in summer, fall, and winter. There was no apparent relation between vitamin D levels and homeostasis model assessment index for insulin resistence (expressed in standard deviation score for sex and Tanner stage) in either puberty or pre-puberty.: Puberty may be a risk factor for the vitamin D deficiency commonly found in the obese child population. This deficiency is not associated with higher insulin resistance in obese pubertal children compared with obese prepubertal children.


2021 ◽  
Vol 53 (02) ◽  
pp. 105-111
Author(s):  
Dongdong Zhang ◽  
Cheng Cheng ◽  
Yan Wang ◽  
Yuan Xue ◽  
Yiming Liu ◽  
...  

AbstractThere is a paucity of data on the relation between serum 25-hydroxyvitamin D [25(OH)D] concentration and cardiometabolic biomarkers in the Chinese population. To comprehensively and quantitatively examine the association of 25(OH)D and cardiometabolic traits, we conducted a cross-sectional study in the Chinese rural population. Serum 25(OH)D and eight cardiometabolic biomarkers were measured in 1714 individuals from Henan province, China. Scatter plot was used to visualize the distribution and correlation of 25(OH)D and cardiometabolic indicators. Moreover, multivariate linear regressions and restricted cubic spline (RCS) functions were performed to examine the quantitative association between the serum 25(OH)D and cardiometabolic parameters. The median serum 25(OH)D level was 19.94 ng/ml in all participants, with an estimated 50.12% presenting vitamin D deficiency. Serum 25(OH)D level showed significantly modest association with cardiometabolic parameters (p<0.05) except for diastolic blood pressure (r=0.03, p=0.22). Multiple linear regression models showed that 25(OH)D concentration was positively associated with high-density lipoprotein cholesterol (HDL-C) and negatively associated with low-density lipoprotein cholesterol (LDL-C) and fasting serum glucose (GLU). The results of restricted cubic spline models indicated a positively linear association of 25(OH)D with HDL-C (p for overall<0.001, p for nonlinearity=0.191) and a negatively linear association with GLU (p for overall=0.024, p for nonlinearity=0.095). Overall, vitamin D deficiency was very common among Chinese rural population living near the 34 degrees north latitude. Besides, there were significant association between 25(OH)D concentrations and cardiometabolic biomarkers including HDL-C and GLU levels. Future longitudinal studies and randomized trials are warranted to clarify the causal relationship.


2020 ◽  
Vol 13 (1) ◽  
pp. 82
Author(s):  
Aidah Juliaty ◽  
Putri Lestari Gabrilasari ◽  
Dasril Daud ◽  
Johan Setyawan Lisal

INTRODUCTION: Obesity represents the major risk factor for development of insulin resistance during childhood and adolescents. In obesity, adipose tissue release free fatty acids, various hormones, and cytokines, resulting in insulin resistance. This study aimed to establish the correlation between vitamin D deficiency and the incidence of insulin resistance in obese children. DESIGN AND METHOD: This analytical cross-sectional study was arranged from December 2019 - February 2020 included 96 students aged 11 - 17 years old from junior and senior high school who met the criteria for obesity in Makassar. The study subjects were parted into two groups, obese children with vitamin D deficiency (levels of 25-hydroxyvitamin D &le; 20 ng/ml) and obese children without vitamin D deficiency group (levels of 25-hydroxyvitamin D &gt; 20 ng/ml). Data were analyzed using univariate and bivariate analysis. RESULTS: The frequency of insulin resistance in obese children with vitamin D deficiency was 28 (54.9%), while obese children without vitamin D deficiency was 10 (22.2%). Based on statistical analysis, the frequency of the occurrence of insulin resistance in vitamin D deficiency obese children was higher than in obese children without vitamin D deficiency with OR = 4.261 (95% CI 1.744 &ndash; 10.411), p = 0.001. CONCLUSION: The risk of insulin resistance in obese children with vitamin D deficiency is 4.261 times higher than obese children without vitamin D deficiency.


2018 ◽  
Vol 40 (4) ◽  
pp. 1109-1151 ◽  
Author(s):  
Roger Bouillon ◽  
Claudio Marcocci ◽  
Geert Carmeliet ◽  
Daniel Bikle ◽  
John H White ◽  
...  

AbstractThe etiology of endemic rickets was discovered a century ago. Vitamin D is the precursor of 25-hydroxyvitamin D and other metabolites, including 1,25(OH)2D, the ligand for the vitamin D receptor (VDR). The effects of the vitamin D endocrine system on bone and its growth plate are primarily indirect and mediated by its effect on intestinal calcium transport and serum calcium and phosphate homeostasis. Rickets and osteomalacia can be prevented by daily supplements of 400 IU of vitamin D. Vitamin D deficiency (serum 25-hydroxyvitamin D <50 nmol/L) accelerates bone turnover, bone loss, and osteoporotic fractures. These risks can be reduced by 800 IU of vitamin D together with an appropriate calcium intake, given to institutionalized or vitamin D–deficient elderly subjects. VDR and vitamin D metabolic enzymes are widely expressed. Numerous genetic, molecular, cellular, and animal studies strongly suggest that vitamin D signaling has many extraskeletal effects. These include regulation of cell proliferation, immune and muscle function, skin differentiation, and reproduction, as well as vascular and metabolic properties. From observational studies in human subjects, poor vitamin D status is associated with nearly all diseases predicted by these extraskeletal actions. Results of randomized controlled trials and Mendelian randomization studies are supportive of vitamin D supplementation in reducing the incidence of some diseases, but, globally, conclusions are mixed. These findings point to a need for continued ongoing and future basic and clinical studies to better define whether vitamin D status can be optimized to improve many aspects of human health. Vitamin D deficiency enhances the risk of osteoporotic fractures and is associated with many diseases. We review what is established and what is plausible regarding the health effects of vitamin D.


2014 ◽  
Vol 39 (10) ◽  
pp. 1137-1143 ◽  
Author(s):  
Tom J. Hazell ◽  
Sina Gallo ◽  
llze Berzina ◽  
Catherine A. Vanstone ◽  
Celia Rodd ◽  
...  

Vitamin D status positively associates with skeletal muscle mass and function in adolescents. The C-3 alpha epimer of 25-hydroxyvitamin D3 (3-epi-25(OH)D3) is high in infants, yet the potential impacts of 25-hydroxyvitamin D3 (25(OH)D3) and 3-epi-25(OH)D3 on skeletal muscle development are largely unexplored. The objective of this study was (i) to explore how the concentrations of 25(OH)D3 and 3-epi-25(OH)D3 track with body composition (lean mass (LM) and fat mass (FM)) and (ii) to determine the association between 25(OH)D3 and 3-epi-25(OH)D3 in infancy. Healthy breastfed infants (n = 132) were followed from 1 to 12 months of age as part of a vitamin D dose–response study (NCT00381914). Anthropometry and diet were assessed. Body composition was measured with dual-energy X-ray absorptiometry. Plasma 25(OH)D3 and 3-epi-25(OH)D3 concentrations were evaluated using liquid chromatography tandem mass spectrometry. Plasma 25(OH)D3 and 3-epi-25(OH)D3 increased from 1 to 3 months of age and decreased thereafter (p < 0.05). Infants with 25(OH)D3 concentrations above 75 nmol/L did not have a higher LM (g or %; p > 0.273) than those below this cutoff. LM was not associated with 25(OH)D3, whereas LM% was positively associated with 25(OH)D3 (β = 0.03; CI: 0.01 to 0.06; p = 0.006), while accounting for sex, weight-for-age Z-score, protein and fat intake, and age. For FM, the variables accounting for a significant amount of the variation were plasma 25(OH)D3 concentration (β = −2.38; CI: −4.35, −0.41; p = 0.019), weight-for-age Z-score, protein and fat intake, and time. In healthy infants, higher vitamin D status associates with leaner body composition, though the effect is smaller in magnitude relative to growth.


2014 ◽  
Vol 18 (12) ◽  
pp. 2211-2219 ◽  
Author(s):  
Ji-Chang Zhou ◽  
Yu-Mei Zhu ◽  
Zheng Chen ◽  
Jun-Luan Mo ◽  
Feng-Zhu Xie ◽  
...  

AbstractObjectiveTo examine the vitamin D status, SNP of the vitamin D receptor gene (VDR) and the effects of vitamin D supplementation on parathyroid hormone and insulin secretion in adult males with obesity or normal weight in a subtropical Chinese city.DesignAn intervention trial.SettingShenzhen City, Guangdong Province, China.SubjectsFrom a cross-sectional survey conducted from June to July, eighty-two normal-weight and ninety-nine obese males (18–69 years) were screened to analyse their vitamin D status and for five SNP of VDR. From these individuals, in the same season of a different year, obese and normal-weight male volunteers (twenty-one per group) were included for an intervention trial with oral vitamin D supplementation at 1250 µg/week for 8 weeks.ResultsFor the survey, there was no significant difference (P>0·05) in baseline circulating 25-hydroxyvitamin D concentrations or in the percentages of participants in different categories of vitamin D status between the two groups. The VDR SNP, rs3782905, was significantly associated with obesity (P=0·043), but none of the examined SNP were correlated with serum 25-hydroxyvitamin D when adjusted for age, BMI and study group. After vitamin D supplementation, serum 25-hydroxyvitamin D concentration, hypersecretions of parathyroid hormone and insulin, and insulin resistance in the obese were changed beneficially (P<0·05); however, the increase in serum 25-hydroxyvitamin D was less than that of the normal-weight men.ConclusionsFor obese and normal-weight men of subtropical China, the summer baseline vitamin D status was similar. However, oral vitamin D supplementation revealed a decreased bioavailability of vitamin D in obese men and ameliorated their hypersecretion of parathyroid hormone and insulin resistance.


2018 ◽  
Vol 15 (4) ◽  
pp. 294-301 ◽  
Author(s):  
Leila Hadjadj ◽  
Szabolcs Várbíró ◽  
Eszter Mária Horváth ◽  
Anna Monori-Kiss ◽  
Éva Pál ◽  
...  

Hyperandrogenic state in females is accompanied with metabolic syndrome, insulin resistance and vascular pathologies. A total of 67%–85% of hyperandrogenic women suffer also from vitamin D deficiency. We aimed to check a potential interplay between hyperandrogenism and vitamin D deficiency in producing insulin resistance and effects on coronary resistance arteries. Adolescent female rats were divided into four groups, 11–12 animals in each. Transdermal testosterone-treated and vehicle-treated animals were kept either on vitamin D-deficient or on vitamin D-supplemented diet for 8 weeks. Plasma sexual steroid, insulin, leptin and vitamin D plasma levels were measured, and oral glucose tolerance test was performed. In coronary arterioles, insulin receptor and vitamin D receptor expressions were tested by immunohistochemistry, and insulin-induced relaxation was measured in vitro on isolated coronary resistance artery segments. Testosterone impaired glucose tolerance, and it diminished insulin relaxation but did not affect the expression of insulin and vitamin D receptors in vascular tissue. Vitamin D deficiency elevated postprandial insulin levels and homeostatic model assessment insulin resistance. It also diminished insulin-induced coronary arteriole relaxation, while it raised the expression of vitamin D and insulin receptors in the endothelial and medial layers. Our conclusion is that both hyperandrogenism and vitamin D deficiency reduce sensitivity of coronary vascular tissue to insulin, but they do it with different mechanisms.


2015 ◽  
Vol 4 ◽  
Author(s):  
Michiel G. J. Balvers ◽  
Elske M. Brouwer-Brolsma ◽  
Silvia Endenburg ◽  
Lisette C. P. G. M. de Groot ◽  
Frans J. Kok ◽  
...  

AbstractVitamin D is a fat-soluble hormone that traditionally has been linked to bone health. Recently, its involvement has been extended to other (extra-skeletal) disease areas, such as cancer, CVD, energy metabolism and autoimmune diseases. Vitamin D deficiency is a worldwide problem, and several recommendation-setting bodies have published guidelines for adequate vitamin D intake and status. However, recommendations from, for example, the Health Council of the Netherlands do not provide advice on how to treat vitamin D deficiency, a condition that is often encountered in the clinic. In addition, these recommendations provide guidelines for the maintenance of ‘minimum levels’, and do not advise on ‘optimum levels’ of vitamin D intake/status to further improve health. The NutriProfiel project, a collaboration between the Gelderse Vallei Hospital (Ede, the Netherlands) and the Division of Human Nutrition of Wageningen University (Wageningen, the Netherlands), was initiated to formulate a protocol for the treatment of vitamin deficiency and for the maintenance of optimal vitamin D status. To discuss the controversies around treatment of deficiency and optimal vitamin D status and intakes, a workshop meeting was organised with clinicians, scientists and dietitians. In addition, a literature review was conducted to collect recent information on optimal intake of vitamins, their optimal circulating concentrations, and effective dosing regimens to treat deficiency. This information has been translated into the NutriProfiel advice, which is outlined in this article.


2020 ◽  
Vol 45 (10) ◽  
pp. 1092-1098
Author(s):  
Soodabeh Aliashrafi ◽  
Mehrangiz Ebrahimi-Mameghani ◽  
Mohammad Asghari Jafarabadi ◽  
Lida Lotfi-Dizaji ◽  
Elnaz Vaghef-Mehrabany ◽  
...  

As there is limited and inconsistent evidence in potential role of vitamin D on insulin resistance and matrix metalloproteinases, this study aimed to examine the effect of vitamin D supplementation on glucose homeostasis, insulin resistance, and matrix metalloproteinases in obese subjects with vitamin D deficiency. A total of 44 participants with serum 25-hydroxyvitamin D (25(OH)D) level ≤ 50 nmol/L and body mass index (BMI) 30–40 kg/m2 were randomly allocated into receiving weight reduction diet with either 50 000 IU vitamin D3 pearl (n = 22) or placebo (n = 22) once weekly for 12 weeks. Primary outcomes were changes in fasting serum glucose (FSG), homeostasis model assessment of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), and matrix metalloproteinases (MMPs). Secondary outcomes were changes in weight, BMI, 25(OH)D, calcium, phosphorous and parathyroid hormone (PTH). Sun exposure and dietary intakes were also assessed. Serum levels of 25(OH)D3 increased significantly with a simultaneous decrease in serum concentration of PTH in the vitamin D group. Weight, BMI, FSG, and MMP-9 decreased significantly in both groups, and there were significant differences in changes in weight, serum 25(OH)D3, PTH, and MMP-9 levels between the groups. Within- and between-groups analysis revealed no significant differences in serum calcium, phosphorous, serum insulin, HOMA-IR, QUICKI, and MMP-2 after intervention. Our results indicated that improvement in vitamin D status resulted in greater reductions in weight and MMP-9 during weight loss. These preliminary results are sufficient to warrant a bigger study group.


2019 ◽  
Vol 23 (7) ◽  
pp. 1179-1183 ◽  
Author(s):  
Madhava Vijayakumar ◽  
Vijayalakshmi Bhatia ◽  
Biju George

AbstractObjectiveTo study plasma 25-hydroxyvitamin D (25(OH)D) status of children in Kerala, southern India, and its relationship with sociodemographic variables.DesignCross-sectional observational study.SettingTertiary government hospital.ParticipantsChildren (n 296) with trivial acute illness were enrolled. Sun exposure and Ca and vitamin D intakes (7 d dietary recall) were documented. Serum Ca, P, alkaline phosphatase, plasma 25(OH)D and parathyroid hormone (PTH) were measured.ResultsPrevalence of vitamin D deficiency (plasma 25(OH)D <30 nmol/l) was 11·1% (median, interquartile range (IQR): 52·6, 38·4–65·6 nmol/l). Children who ate fish daily had significantly higher plasma 25(OH)D than those who did not (median, IQR: 52·5, 40·8–68·9 v. 49·1, 36·2–60·7 nmol/l; P = 0·02). Those investigated in the months of March–May showed highest 25(OH)D v. those enrolled during other times (median, IQR: 58·7, 45·6–81·4 v. 45·5, 35·6–57·4 nmol/l; P <0·001). Plasma 25(OH)D correlated positively with serum P (r = 0·24, P <0·001) and Ca intake (r = 0·16, P 0·03), negatively with age (r = −0·13, P 0·03) and PTH (r = −0·22, P <0·001.). On linear regression, summer season (March–May), lower age, daily fish intake and higher Ca intake were independently associated with plasma 25(OH)D.ConclusionsPrevalence of vitamin D deficiency is low in Kerala. The natural fish diet of coastal Kerala and the latitude may be protective. Public health policy in India should take account of this geographical diversity.


Sign in / Sign up

Export Citation Format

Share Document