scholarly journals Leukemia inhibitory factor functions as a growth factor in pancreas carcinoma cells: Involvement of regulation of LIF and its receptor expression

Author(s):  
Hidenobu Kamohara ◽  
Michio Ogawa ◽  
Takatoshi Ishiko ◽  
Kiyoshi Sakamoto ◽  
Hideo Baba
Reproduction ◽  
2010 ◽  
Vol 139 (6) ◽  
pp. 1039-1046 ◽  
Author(s):  
Jiang Wen ◽  
Juan Liu ◽  
Guangqi Song ◽  
Limei Liu ◽  
Bo Tang ◽  
...  

6-Bromoindirubin-3′-oxime (BIO), which is one of the glycogen synthase kinase 3 inhibitors and a key regulator of numerous signaling pathways, was reported to be capable of maintaining the pluripotency of human and mouse embryonic stem cells. Presently, it is unknown whether BIO can influence the derivation of porcine embryonic germ (EG) cells. In this study, porcine primordial germ cells (PGCs) were isolated from gonads of 24- and 28-day embryos, and were then treated with BIO either individually or in combination with other cytokines (stem cell factor (SCF), leukemia inhibitory factor (LIF), and fibroblast growth factor (FGF); abbreviated as ‘3F’), and the effects of the treatment on the proliferation ability of porcine PGCs at early stage were examined using 5-bromo-2-deoxyuridine (Brdu) immunostaining assay. After continuous culture, the effects on the efficiency of porcine undifferentiated EG cells in the third passage and differentiated EG cells from embryoid bodies were examined as well. The results obtained through the observation of the Brdu-labeled PGCs indicated that BIO in combination with 3F resulted in a significant increase in the mitosis index, and also indicated that the BIO in combination with 3F had a higher efficiency in promoting the formation of porcine EG colony derived from porcine day 24 PGCs than BIO used either individually or in combination with LIF. In addition, BIO in combination with 3F exhibited the apparent anti-differentiation activity by reversing the differentiated EG cells to the undifferentiated status. Our results demonstrate that BIO in combination with SCF, LIF, and FGF could significantly contribute to the establishment of a porcine EG cell colony and maintain the undifferentiated status.


Sign in / Sign up

Export Citation Format

Share Document