Analysis of differentially expressed long non‑coding RNAs revealed a pro‑tumor role of MIR205HG in cervical cancer

2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Lu Yin ◽  
Yi Zhang ◽  
Leizhen Zheng
2020 ◽  
Vol 11 ◽  
Author(s):  
Imran Ahmad ◽  
Araceli Valverde ◽  
Raza Ali Naqvi ◽  
Afsar R. Naqvi

Macrophages (Mφ) are immune cells that exhibit remarkable functional plasticity. Identification of novel endogenous factors that can regulate plasticity and innate immune functions of Mφ will unravel new strategies to curb immune-related diseases. Long non-coding RNAs (lncRNAs) are a class of endogenous, non-protein coding, regulatory RNAs that are increasingly being associated with various cellular functions and diseases. Despite their ubiquity and abundance, lncRNA-mediated epigenetic regulation of Mφ polarization and innate immune functions is poorly studied. This study elucidates the regulatory role of lncRNAs in monocyte to Mφ differentiation, M1/M2 dichotomy and innate immune responses. Expression profiling of eighty-eight lncRNAs in monocytes and in vitro differentiated M2 Mφ identified seventeen differentially expressed lncRNAs. Based on fold-change and significance, we selected four differentially expressed lncRNAs viz., RN7SK, GAS5, IPW, and ZFAS1 to evaluate their functional impact. LncRNA knockdown was performed on day 3 M2 Mφ and the impact on polarization was assessed on day 7 by surface marker analysis. Knockdown of RN7SK and GAS5 showed downregulation of M2 surface markers (CD163, CD206, or Dectin) and concomitant increase in M1 markers (MHC II or CD23). RN7SK or GAS5 knockdown showed no significant impact on CD163, CD206, or CD23 transcripts. M1/M2 markers were not impacted by IPW or ZFAS1 knockdown. Functional regulation of antigen uptake/processing and phagocytosis, two central innate immune pathways, by candidate lncRNA was assessed in M1/M2 Mφ. Compared to scramble, enhanced antigen uptake and processing were observed in both M1/M2 Mφ transfected with siRNA targeting GAS5 and RN7SK but not IPW and ZFAS1. In addition, knockdown of RN7SK significantly augmented uptake of labelled E. coli in vitro by M1/M2 Mφ, while no significant difference was in GAS5 silencing cells. Together, our results highlight the instrumental role of lncRNA (RN7SK and GAS5)-mediated epigenetic regulation of macrophage differentiation, polarization, and innate immune functions.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Yazmín Gómez-Gómez ◽  
Jorge Organista-Nava ◽  
Patricio Gariglio

MicroRNAs (miRNAs) are a class of small non coding RNAs of 18–25 nucleotides in length. The temporal or short-lived expression of the miRNAs modulates gene expression post transcriptionally. Studies have revealed that miRNAs deregulation correlates and is involved with the initiation and progression of human tumors. Cervical cancer (CC) displays notably increased or decreased expression of a large number of cellular oncogenic or tumor suppressive miRNAs, respectively. However, understanding the potential role of miRNAs in CC is still limited. In CC, the high-risk human papillomaviruses (HR-HPVs) infection can affect the miRNAs expression through oncoprotein E6 and E7 that contribute to viral pathogenesis, although other viral proteins might also be involved. This deregulation in the miRNAs expression has an important role in the hallmarks of CC. Interestingly, the miRNA expression profile in CC can discriminate between normal and tumor tissue and the extraordinary stability of miRNAs makes it suitable to serve as diagnostic and prognostic biomarkers of cancer. In this review, we will summarize the role of the HR-HPVs in miRNA expression, the role of miRNAs in the hallmarks of CC, and the use of miRNAs as potential prognostic biomarkers in CC.


2020 ◽  
Author(s):  
Fuhui Han ◽  
Jing Li ◽  
Ranran Zhao ◽  
Lirong Liu ◽  
Lanlan Li ◽  
...  

Abstract Background: Intramuscular fat (IMF) content has become one of the most important indicators for measuring meat quality, and levels of IMF are affected by various genes. Long non-coding RNAs (lncRNAs) are widely expressed non-coding RNAs that play an important regulatory role in a variety of biological processes; however, research on the lncRNAs involved in sheep IMF deposition is still in its infancy. Aohan fine-wool sheep (AFWS), one of China's most important meat-hair, dual-purpose sheep breed, provides a great model for studying the role of lncRNAs in the regulation of IMF deposition. We identified lncRNAs by RNA sequencing in Longissimus thoracis et lumborum (LTL) samples of sheep at two ages: 2 months (Mth-2) and 12 months (Mth-12). Results: We identified a total of 26,247 genes and 6,935 novel lncRNAs in LTL samples of sheep. Among these, 199 mRNAs and 61 lncRNAs were differentially expressed. We then compared the structural characteristics of lncRNAs and mRNAs. We obtained target genes of differentially expressed lncRNAs (DELs) and performed enrichment analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). We found that target mRNAs were enriched in metabolic processes and developmental pathways. One pathway was significantly enriched, namely tight junction. Based on the analysis of critical target genes, we obtained seven candidate lncRNAs that potentially regulated lipid deposition and constructed a lncRNA-mRNA co-expression network that included MSTRG.4051.3-FZD4, MSTRG.16157.3-ULK1, MSTRG.21053.3-PAQR3, MSTRG.19941.2-TPI1, MSTRG.12864.1-FHL1, MSTRG.2469.2-EXOC6 and MSTRG.21381.1-NCOA1. We speculated that these candidate lncRNAs might play a role by regulating the expression of target genes. We randomly selected five mRNAs and five lncRNAs to verify the accuracy of the sequencing data by qRT-PCR.Conclusions: Our study identified the differentially expressed mRNAs and lncRNAs during intramuscular lipid deposition in Aohan fine-wool sheep. The work may widen the knowledge about the annotation of the sheep genome and provide a working basis for investigating intramuscular fat deposition in sheep.


2020 ◽  
Author(s):  
Xuping Zhu ◽  
Yanyu Li ◽  
Xue Zhu ◽  
Yanmin Jiang ◽  
Xiaowei Zhu ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) are important mediators in the pathogenesis of diabetic gastrointestinal autonomic neuropathy, which has just been reported to have a relation to enteric glial cells (EGCs). However, the role of lncRNAs in the pathogenesis of diabetic gastrointestinal autonomic neuropathy, especially EGCs-related gastrointestinal dysfunction, has never been reported. Methods RNA sequencing technology (RNA-Seq) was used to screen the differential lncRNAs and mRNAs in EGCs under hyperglycemia (300 mmol L− 1 high glucose). Results Totally 4678 differentially expressed lncRNAs (DE lncRNAs) and 6244 differentially expressed mRNAs (DE mRNAs) were obtained. GO enrichment analysis and KEGG pathway analysis showed significant differences. 2910 and 1549 co-expressed mRNAs were respectively expressed in up-regulated and down-regulated DE lncRNA target genes. Several up- or down-regulated lncRNAs were at the key junction points of the regulatory network. Protein-protein interaction networks showed highly connected clusters were TP53, AKT1, Casp9, Casp8, Casp3, TNF, etc, which are known closely related to apoptosis. FLRT3, Fras1, and other related target genes, which revealed the potential function of lncRNAs, may be important targets for differential lncRNAs to regulate the apoptosis of glial cells induced by hyperglycemia. Conclusion In this study, the involvement of lncRNAs in EGCs under hyperglycemia was analyzed using transcriptome analysis.


2020 ◽  
Author(s):  
Fuhui Han ◽  
Jing Li ◽  
Nan Liu ◽  
Ranran Zhao ◽  
Lirong Liu ◽  
...  

Abstract Background: Intramuscular fat (IMF) content has become one of the most important indicators for measuring meat quality, and levels of IMF are affected by various genes. Long non-coding RNAs (lncRNAs) are widely expressed non-coding RNAs that play an important regulatory role in a variety of biological processes; however, research on the lncRNAs involved in sheep IMF deposition is still in its infancy. Aohan fine-wool sheep (AFWS), one of China's most important meat-hair, dual-purpose sheep breed, provides a great model for studying the role of lncRNAs in the regulation of IMF deposition. We identified lncRNAs by RNA sequencing in Longissimus thoracis et lumborum (LTL) samples of sheep at two ages: 2 months (Mth-2) and 12 months (Mth-12). Results: We identified a total of 26,247 genes and 6,935 novel lncRNAs in LTL samples of sheep. Among these, 199 mRNAs and 61 lncRNAs were differentially expressed. We then compared the structural characteristics of lncRNAs and mRNAs. We obtained target genes of differentially expressed lncRNAs (DELs) and performed enrichment analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). We found that target mRNAs were enriched in metabolic processes and developmental pathways. One pathway was significantly enriched, namely tight junction. Based on the analysis of critical target genes, we obtained seven candidate lncRNAs that potentially regulated lipid deposition and constructed a lncRNA-mRNA co-expression network that included MSTRG.4051.3-FZD4, MSTRG.16157.3-ULK1, MSTRG.21053.3-PAQR3, MSTRG.19941.2-TPI1, MSTRG.12864.1-FHL1, MSTRG.2469.2-EXOC6 and MSTRG.21381.1-NCOA1. We speculated that these candidate lncRNAs might play a role by regulating the expression of target genes. We randomly selected five mRNAs and five lncRNAs to verify the accuracy of the sequencing data by qRT-PCR.Conclusions: Our study identified the differentially expressed mRNAs and lncRNAs during intramuscular lipid deposition in Aohan fine-wool sheep. The work may widen the knowledge about the annotation of the sheep genome and provide a working basis for investigating intramuscular fat deposition in sheep.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fuhui Han ◽  
Jing Li ◽  
Ranran Zhao ◽  
Lirong Liu ◽  
Lanlan Li ◽  
...  

Abstract Background Intramuscular fat (IMF) content has become one of the most important indicators for measuring meat quality, and levels of IMF are affected by various genes. Long non-coding RNAs (lncRNAs) are widely expressed non-coding RNAs that play an important regulatory role in a variety of biological processes; however, research on the lncRNAs involved in sheep IMF deposition is still in its infancy. Aohan fine-wool sheep (AFWS), one of China’s most important meat-hair, dual-purpose sheep breed, provides a great model for studying the role of lncRNAs in the regulation of IMF deposition. We identified lncRNAs by RNA sequencing in Longissimus thoracis et lumborum (LTL) samples of sheep at two ages: 2 months (Mth-2) and 12 months (Mth-12). Results We identified a total of 26,247 genes and 6935 novel lncRNAs in LTL samples of sheep. Among these, 199 mRNAs and 61 lncRNAs were differentially expressed. We then compared the structural characteristics of lncRNAs and mRNAs. We obtained target genes of differentially expressed lncRNAs (DELs) and performed enrichment analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). We found that target mRNAs were enriched in metabolic processes and developmental pathways. One pathway was significantly enriched, namely tight junction. Based on the analysis of critical target genes, we obtained seven candidate lncRNAs that potentially regulated lipid deposition and constructed a lncRNA-mRNA co-expression network that included MSTRG.4051.3-FZD4, MSTRG.16157.3-ULK1, MSTRG.21053.3-PAQR3, MSTRG.19941.2-TPI1, MSTRG.12864.1-FHL1, MSTRG.2469.2-EXOC6 and MSTRG.21381.1-NCOA1. We speculated that these candidate lncRNAs might play a role by regulating the expression of target genes. We randomly selected five mRNAs and five lncRNAs to verify the accuracy of the sequencing data by qRT-PCR. Conclusions Our study identified the differentially expressed mRNAs and lncRNAs during intramuscular lipid deposition in Aohan fine-wool sheep. The work may widen the knowledge about the annotation of the sheep genome and provide a working basis for investigating intramuscular fat deposition in sheep.


Author(s):  
Qiao Zhao ◽  
Hongjiao Du ◽  
Xiaodong Li

IntroductionAtherosclerosis has become a worldwide medical burden. Our previous studies have shown that Artemisinin(ART) had the capability to reduce atherosclerosis. Emerging evidence indicates that Long non-coding RNAs(lncRNAs) are engaged in the formation of atherosclerosis. However, whether lncRNAs might participate in the mechanism through which artemisinin mitigates atherosclerosis has not been reported.Material and methodsEight-week-old apolipoprotein E deficient (APOE-/-) mice were divided into two groups, one of which was treated with Artemisinin. Red oil O staining was used to measure the sizes of Atherosclerotic lesion. We conducted deep sequencing to investigate lncRNA profiles in the aorta tissue in high-fat diet fed APOE knockdown mice with and without artemisinin treatment. CeRNA network, Kyoto Encyclopedia of Genes and Genomes(KEGG) and Gene Ontology(GO) analyses were constructed through bioinformatics analysis. RT-PCR was used to validate the differentially expressed lncRNAs.ResultsA total of 102 lncRNAs and 4,630 mRNAs were differentially expressed (p<0.05) between the Artemisinin treatment group and atherosclerosis model group. KEGG and GO analyses indicated that the categories metabolic process, specific amino acid degradation and PI3K-Akt signaling pathway are involved in the effects of artemisinin treatment in atherosclerosis(qvalue<0.05). LncRNA ENSMUST00000099676.4, ENSMUST00000143673.1, ENSMUST00000070085.5 and ENSMUST00000224554 might be engaged in treatment mechanism through which Artemisinin alleviates Atherosclerosis.ConclusionsThese findings indicated the possible mechanism and therapeutic role of lncRNAs in Artemisinin treatment of atherosclerosis and provided a theoretical basis for the future application of Artemisinin in patients with atherosclerosis.


2020 ◽  
Author(s):  
Ruili Liu ◽  
Xianxun Liu ◽  
Kun Yu ◽  
Xuejin Bai ◽  
Yajuan Dong

Abstract Background There is increasing understanding of the possible regulatory role of long non-coding RNAs (LncRNA). Studies on livestock have mainly focused on the regulation of cell differentiation, fat synthesis, and embryonic development. However, there has been little study of skeletal muscle of domestic animals and the potential role of lncRNA. Results RNA samples were collected from longissimus dorsi muscle samples of Shandong black cattle and Luxi cattle and libraries were constructed and sequenced. A total of 1415 transcripts (of which 480 were LncRNAs) were differentially expressed (P < 0.05) in the different breeds, and fourteen of these RNAs were randomly selected and validated by qPCR. We found that the most differentially expressed LncRNAs were found on chromosome 9, with 1164 within 50 kb of a protein-coding gene. In addition, Pearson's correlation coefficients of co-expression levels indicated a potential trans regulatory relationship between the differentially expressed LncRNAs and 43844 mRNAs (r > 0.9). The identified co-expressed mRNAs (MYORG, Dll1, EFNB2, SOX6, MYOCD, and MYLK3) are related to the formation of muscle structure, and enriched in muscle system process, strained muscle cell differentiation, muscle cell development, striated muscle tissue development, calcium signaling, and AMPK signaling. Additionally, we also found that some LncRNAs (LOC112444238, LOC101903367, LOC104975788, LOC112441863, LOC112449549, and LOC101907194) may interact with miRNAs related to cattle muscle growth and development. Based on this, we constructed a LncRNAs-miRNA-mRNA interaction network as the putative basis for biological regulation in cattle skeletal muscle. Interestingly, a candidate differential LncRNA (LOC104975788) and a protein-coding gene (Pax7) contain miR-133a binding sites and binding was confirmed by luciferase reporter assay. LOC104975788 may bind miR-133a competitively with Pax7, thus relieving the inhibitory effect of miR-133a on Pax7 to regulate skeletal muscle development. These results will provide the theoretical basis for further study of LncRNA regulation and activity in different cattle breeds. Conclusions The data obtained in this study were used to predict muscle-related LncRNAs-miRNA-mRNA interaction networks, which can help elucidate the molecular mechanism of cattle muscle development. These results can be used to facilitate livestock breeding and improve livestock production.


2020 ◽  
Vol 10 ◽  
Author(s):  
Maria Lina Tornesello ◽  
Raffaella Faraonio ◽  
Luigi Buonaguro ◽  
Clorinda Annunziata ◽  
Noemy Starita ◽  
...  

2020 ◽  
Author(s):  
Fuhui Han ◽  
Jing Li ◽  
Nan Liu ◽  
Ranran Zhao ◽  
Lirong Liu ◽  
...  

Abstract Background: Intramuscular fat (IMF) content has become one of the most important indicators for measuring meat quality, and levels of IMF are affected by various genes. Long non-coding RNAs (lncRNAs) are widely expressed non-coding RNAs that play an important regulatory role in a variety of biological processes; however, research on the lncRNAs involved in sheep IMF deposition is still in its infancy. Aohan fine-wool sheep (AFWS), one of China's most important meat-hair, dual-purpose sheep breed, provides a great model for studying the role of lncRNAs in the regulation of IMF deposition. We identified lncRNAs by RNA sequencing in Longissimus thoracis et lumborum (LTL) samples of sheep at two ages: 2 months (Mth-2) and 12 months (Mth-12). Results: We identified a total of 26,247 genes and 6,935 novel lncRNAs in LTL samples of sheep. Among these, 199 mRNAs and 61 lncRNAs were differentially expressed. We then compared the structural characteristics of lncRNAs and mRNAs. We obtained target genes of differentially expressed lncRNAs (DELs) and performed enrichment analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). We found that target mRNAs were enriched in metabolic processes and developmental pathways. Three pathways were significantly enriched, namely tight junction, glycosaminoglycan biosynthesis-heparan sulfate/heparin and lysosome. Based on the analysis of critical target genes, we obtained seven candidate lncRNAs that potentially regulated lipid deposition and constructed an lncRNA-mRNA co-expression network that included MSTRG.4051.3-FZD4,MSTRG.16157.3-ULK1, MSTRG.21053.3-PAQR3, MSTRG.19941.2-TPI1, MSTRG.12864.1-FHL1,MSTRG.2469.2-EXOC6 and MSTRG.21381.1-NCOA1. We speculated that these candidate lncRNAs might play a role by regulating the expression of target genes. We randomly selected five mRNAs and five lncRNAs to verify the accuracy of the sequencing data by qRT-PCR. Conclusions: Our study provided a list of the lncRNAs and mRNAs related to intramuscular lipid deposition in sheep and laid a foundation for future research on regulatory mechanisms.


Sign in / Sign up

Export Citation Format

Share Document