scholarly journals Effects of cancer-associated fibroblasts on the migration and invasion abilities of SGC-7901 gastric cancer cells

2012 ◽  
Vol 5 (2) ◽  
pp. 609-612 ◽  
Author(s):  
CHENGYI HU ◽  
ZHENGCAI WANG ◽  
LILI ZHAI ◽  
MILING YANG ◽  
LIHUI SHAN ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1820
Author(s):  
Chengcheng Hao ◽  
Yuxin Cui ◽  
Jane Lane ◽  
Shuqin Jia ◽  
Jiafu Ji ◽  
...  

Background: Osteopontin (OPN) splice variants are identified as predictors of tumour progression and therapeutic resistance in certain types of solid tumours. However, their roles in gastric cancer (GC) remain poorly characterized. The current study sought to assess the prognostic value of the three OPN splice variants (namely OPN-a, OPN-b, and OPN-c) in gastric cancer and their potential functions within gastric cancer cells. Methods: RNA extraction and reverse transcription were performed using our clinical cohort of gastric carcinomas and matched normal tissues (n = 324 matched pairs). Transcript levels were determined using real-time quantitative PCR. Three OPN splice variants overexpressed cell lines were created from the gastric cancer cell line HGC-27. Subsequently, biological functions, including cell growth, adhesion, migration, and invasion, were studied. The potential effects of OPN isoforms on cisplatin and 5-Fu were evaluated by detecting cellular reactive oxygen species (ROS) levels in the HGC-27-derived cell lines. Results: Compared with normal tissues, the expression levels of three splice variants were all elevated in gastric cancer tissues in an order of OPN-a > OPN-b > OPN-c. The OPN-a level significantly increased with increasing TNM staging and worse clinical outcome. There appeared to be a downregulation for OPN-c in increasing lymph node status (p < 0.05), increasing TNM staging, and poor differentiation. High levels of OPN-a and OPN-b were correlated with short overall survival and disease-free survival of gastric cancer patients. However, the low expression of OPN-c was significantly associated with a poor prognosis. Functional analyses further showed that ectopic expression of OPN-c suppressed in vitro proliferation, adhesiveness, migration, and invasion properties of HGC-27 cells, while the opposite role was seen for OPN-a. Cellular ROS detection indicated that OPN-a and OPN-c significantly promoted ROS production after treatment with 5-Fu comparing to OPN-vector, while only OPN-a markedly induced ROS production after treatment with cisplatin. Conclusion: Our results suggest that OPN splice variants have distinguished potential to predict the prognosis of gastric cancer. Three OPN variants exert distinctive functions in gastric cancer cells. Focusing on specific OPN isoforms could be a novel direction for developing diagnostic and therapeutic approaches in gastric cancer.


2020 ◽  
Author(s):  
Yoshimi Yasukawa ◽  
Naoko Hattori ◽  
Naoko Iida ◽  
Hideyuki Takeshima ◽  
Masahiro Maeda ◽  
...  

Abstract Cancer-associated fibroblasts (CAFs) tend to have tumor-promoting capacity, and can provide therapeutic targets. Even without cancer cells, CAF phenotypes are stably maintained, and DNA methylation and H3K27me3 changes have been shown to be involved. Here, we searched for a potential therapeutic target in primary CAFs from gastric cancer and a mechanism for its dysregulation. Expression microarray using eight CAFs and seven non-CAFs (NCAFs) revealed that serum amyloid A1 (SAA1), which encodes an acute phase secreted protein, was second most upregulated in CAFs, following IGF2. Conditioned medium (CM) derived from SAA1-overexpressing NCAFs was shown to increase migration of gastric cancer cells compared to that from control NCAFs, and its tumor-promoting effect was comparable to that of CM from CAFs. In addition, increased migration of cancer cells by CM from CAFs was mostly canceled with CM from CAFs with SAA1 knockdown. Chromatin immunoprecipitation (ChIP)-quantitative PCR showed that CAFs had higher levels of H3K27ac, an active enhancer mark, in the promoter and the two far upstream regions of SAA1 than NCAFs. Also, BET bromodomain inhibitors, JQ1 and mivebresib, decreased SAA1 expression and tumor-promoting effects in CAFs, suggesting SAA1 upregulation by enhancer activation in CAFs. Our present data showed that SAA1 is a candidate therapeutic target from gastric CAFs and indicated that increased enhancer acetylation is important for its overexpression.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dandan Chai ◽  
Huifen Du ◽  
Kesheng Li ◽  
Xueliang Zhang ◽  
Xiaoqin Li ◽  
...  

Abstract Background Ectopic expression of CDX2 is associated with the development and progression of gastric cancer. Previous studies showed that CDX2 may be an upstream regulator of Reg IV expression in gastric cancer, and our previous report showed that Reg IV upregulated SOX9 expression and enhanced cell migration and invasion in gastric cancer cells. However, the regulatory roles of CDX2 have not been clarified in gastric cancer, and the correlation between CDX2 and Reg IV requires further study. Methods CDX2 and Reg IV were examined in gastric cancer specimens and paired adjacent tissues via real-time PCR and immunohistochemistry (IHC). The association between CDX2 and Reg IV was assessed using the χ2-test and Spearman’s rank correlation. To verify their relationship, knockdown and exogenous expression of CDX2 or Reg IV were performed in AGS and MKN-45 gastric cancer cells, and their expression was subsequently analyzed via a real-time PCR and western blotting. Wound-healing and Transwell assays were used to examine migration and invasion in AGS and MKN-45 cells following CDX2 silencing or overexpression. Results A positive correlation was observed between CDX2 and Reg IV expression at the mRNA and protein levels in gastric cancer tissues. CDX2 silencing significantly downregulated Reg IV expression, and CDX2 overexpression significantly upregulated Reg IV expression in AGS and MKN-45 cells. Neither Reg IV silencing nor overexpression had any effect on CDX2 protein expression in AGS or MKN-45 cells, even though both affected the expression of CDX2 mRNA. Functionally, CDX2 silencing significantly inhibited cell migration and invasion, and CDX2 overexpression significantly promoted cell migration and invasion in AGS and MKN-45 cells. Conclusions Our findings demonstrate that CDX2 expression was positively correlated with that of Reg IV in gastric cancer, and CDX2 promoted cell migration and invasion through upregulation of Reg IV expression in AGS and MKN-45 cells.


2021 ◽  
Vol 49 (4) ◽  
pp. 030006052110059
Author(s):  
Fangfang Yong ◽  
Hemei Wang ◽  
Chao Li ◽  
Huiqun Jia

Objective Previous studies suggested that sevoflurane exerts anti-proliferative, anti-migratory, and anti-invasive effects on cancer cells. To determine the role of sevoflurane on gastric cancer (GC) progression, we evaluated its effects on the proliferation, migration, and invasion of SGC7901, AGS, and MGC803 GC cells. Methods GC cells were exposed to different concentrations of sevoflurane (1.7, 3.4, or 5.1% v/v). Cell viability, migration, and invasion were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Transwell assays. Immunohistochemical staining and immunoblotting were performed to analyze forkhead box protein 3 (FOXP3) protein expression in tissue specimens and cell lines, respectively. Results FOXP3 was downregulated in human GC specimens and cell lines. Functionally, FOXP3 overexpression significantly inhibited the proliferation, migration, and invasion of GC cells and accelerated their apoptosis. Moreover, sevoflurane significantly blocked GC cell migration and invasion compared with the findings in the control group. However, FOXP3 silencing neutralized sevoflurane-induced apoptosis and the inhibition of GC cell migration and invasion. Sevoflurane-induced apoptosis and the suppression of migration and invasion might be associated with FOXP3 overactivation in GC cells. Conclusions Sevoflurane activated FOXP3 and prevented GC progression via inhibiting cell migration and invasion in vitro.


2009 ◽  
Vol 20 (24) ◽  
pp. 5127-5137 ◽  
Author(s):  
Kai-Wen Hsu ◽  
Rong-Hong Hsieh ◽  
Chew-Wun Wu ◽  
Chin-Wen Chi ◽  
Yan-Hwa Wu Lee ◽  
...  

The c-Myc promoter binding protein 1 (MBP-1) is a transcriptional suppressor of c-myc expression and involved in control of tumorigenesis. Gastric cancer is one of the most frequent neoplasms and lethal malignancies worldwide. So far, the regulatory mechanism of its aggressiveness has not been clearly characterized. Here we studied roles of MBP-1 in gastric cancer progression. We found that cell proliferation was inhibited by MBP-1 overexpression in human stomach adenocarcinoma SC-M1 cells. Colony formation, migration, and invasion abilities of SC-M1 cells were suppressed by MBP-1 overexpression but promoted by MBP-1 knockdown. Furthermore, the xenografted tumor growth of SC-M1 cells was suppressed by MBP-1 overexpression. Metastasis in lungs of mice was inhibited by MBP-1 after tail vein injection with SC-M1 cells. MBP-1 also suppressed epithelial-mesenchymal transition in SC-M1 cells. Additionally, MBP-1 bound on cyclooxygenase 2 (COX-2) promoter and downregulated COX-2 expression. The MBP-1-suppressed tumor progression in SC-M1 cells were through inhibition of COX-2 expression. MBP-1 also exerted a suppressive effect on tumor progression of other gastric cancer cells such as AGS and NUGC-3 cells. Taken together, these results suggest that MBP-1–suppressed COX-2 expression plays an important role in the inhibition of growth and progression of gastric cancer.


2016 ◽  
Vol 118 (4) ◽  
pp. 323-330 ◽  
Author(s):  
Lanlan Wang ◽  
Yuanyuan Zhang ◽  
Lijun Zhao ◽  
Siqi Liu ◽  
Shashuang Yu ◽  
...  

Neoplasma ◽  
2014 ◽  
Vol 61 (03) ◽  
pp. 291-298 ◽  
Author(s):  
Y. LI ◽  
B. B. TAN ◽  
Q. ZHAO ◽  
L. Q. FAN ◽  
D. WANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document