scholarly journals Comprehensive analysis of prognostic immune‑related genes associated with the tumor microenvironment of pancreatic ductal adenocarcinoma

2020 ◽  
Vol 20 (6) ◽  
pp. 1-1
Author(s):  
Shibai Yan ◽  
Juntao Fang ◽  
Yuanqiang Zhu ◽  
Yong Xie ◽  
Feng Fang
2020 ◽  
Vol 19 ◽  
pp. 153303382092096
Author(s):  
Hongzhi Sun ◽  
Bo Zhang ◽  
Haijun Li

Pancreatic ductal adenocarcinoma has extremely high malignancy and patients with pancreatic ductal adenocarcinoma have dismal prognosis. The failure of pancreatic ductal adenocarcinoma treatment is largely due to the tumor microenvironment, which is featured by ample stromal cells and complicated extracellular matrix. Recent genomic analysis revealed that pancreatic ductal adenocarcinoma harbors frequently mutated genes including KRAS, TP53, CDKN2A, and SMAD4, which can widely alter cellular processes and behaviors. As shown by accumulating studies, these mutant genes may also change tumor microenvironment, which in turn affects pancreatic ductal adenocarcinoma progression. In this review, we summarize the role of such genetic mutations in tumor microenvironment regulation and potential mechanisms.


2011 ◽  
Vol 17 (22) ◽  
pp. 7015-7023 ◽  
Author(s):  
David Z. Chang ◽  
Ying Ma ◽  
Baoan Ji ◽  
Huamin Wang ◽  
Defeng Deng ◽  
...  

2020 ◽  
Author(s):  
S. Mahnaz ◽  
L. Das Roy ◽  
M. Bose ◽  
C. De ◽  
S. Nath ◽  
...  

ABSTRACTMyeloid-derived suppressor cells (MDSCs) are immature myeloid cells that are responsible for immunosuppression in tumor microenvironment. Here we report the impact of mucin 1 (MUC1), a transmembrane glycoprotein, on proliferation and functional activity of MDSCs. To determine the role of MUC1 in MDSC phenotype, we analyzed MDSCs derived from wild type (WT) and MUC1-knockout (MUC1KO) mice bearing pancreatic ductal adenocarcinoma KCKO and breast cancer C57MG xenografts. We observed enhanced tumor growth in MUC1KO mice compared to WT mice in both pancreatic KCKO and breast C57MG cancer models due to increased MDSC population and enrichment of Tregs in tumor microenvironment. Our current study shows that knockdown of MUC1 in MDSCs promotes proliferation and immature suppressive phenotype indicated by increased level of iNOS, ARG1 activity and TGF-β secretion under cancer conditions. Increased activity of MDSCs leads to repression of IL-2 and IFN-ɣ production by T-cells. We were able to find that MDSCs from MUC1KO mice have higher levels of c-Myc and activated pSTAT3 as compared to MUC1 WT mice, that are signaling pathways leading to increased survival, proliferation and prevention of maturation. In summary, MUC1 regulates signaling pathways that maintain immunosuppressive properties of MDSCs. Thus, immunotherapy must target only tumor associated MUC1 on epithelial cells and not MUC1 on hematopoietic cells to avoid expansion and suppressive functions of MDSC.


Author(s):  
Dongliang Liu ◽  
Ethan Poteet ◽  
Zhengdong Liang ◽  
Emily Laplante ◽  
Lisa Brubaker ◽  
...  

GigaScience ◽  
2020 ◽  
Vol 9 (7) ◽  
Author(s):  
Boris Aguilar ◽  
David L Gibbs ◽  
David J Reiss ◽  
Mark McConnell ◽  
Samuel A Danziger ◽  
...  

Abstract Background Mechanistic models, when combined with pertinent data, can improve our knowledge regarding important molecular and cellular mechanisms found in cancer. These models make the prediction of tissue-level response to drug treatment possible, which can lead to new therapies and improved patient outcomes. Here we present a data-driven multiscale modeling framework to study molecular interactions between cancer, stromal, and immune cells found in the tumor microenvironment. We also develop methods to use molecular data available in The Cancer Genome Atlas to generate sample-specific models of cancer. Results By combining published models of different cells relevant to pancreatic ductal adenocarcinoma (PDAC), we built an agent-based model of the multicellular pancreatic tumor microenvironment, formally describing cell type–specific molecular interactions and cytokine-mediated cell-cell communications. We used an ensemble-based modeling approach to systematically explore how variations in the tumor microenvironment affect the viability of cancer cells. The results suggest that the autocrine loop involving EGF signaling is a key interaction modulator between pancreatic cancer and stellate cells. EGF is also found to be associated with previously described subtypes of PDAC. Moreover, the model allows a systematic exploration of the effect of possible therapeutic perturbations; our simulations suggest that reducing bFGF secretion by stellate cells will have, on average, a positive impact on cancer apoptosis. Conclusions The developed framework allows model-driven hypotheses to be generated regarding therapeutically relevant PDAC states with potential molecular and cellular drivers indicating specific intervention strategies.


Author(s):  
Abigail C. Cornwell ◽  
Abdulrahman A. Alahmari ◽  
Arwen A. Tisdale ◽  
Michael E. Feigin

2019 ◽  
Vol 235 (2) ◽  
pp. 1025-1035 ◽  
Author(s):  
Sheng Yang ◽  
Tong Liu ◽  
Hongmei Nan ◽  
Yan Wang ◽  
Hao Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document