scholarly journals A generalizable data-driven multicellular model of pancreatic ductal adenocarcinoma

GigaScience ◽  
2020 ◽  
Vol 9 (7) ◽  
Author(s):  
Boris Aguilar ◽  
David L Gibbs ◽  
David J Reiss ◽  
Mark McConnell ◽  
Samuel A Danziger ◽  
...  

Abstract Background Mechanistic models, when combined with pertinent data, can improve our knowledge regarding important molecular and cellular mechanisms found in cancer. These models make the prediction of tissue-level response to drug treatment possible, which can lead to new therapies and improved patient outcomes. Here we present a data-driven multiscale modeling framework to study molecular interactions between cancer, stromal, and immune cells found in the tumor microenvironment. We also develop methods to use molecular data available in The Cancer Genome Atlas to generate sample-specific models of cancer. Results By combining published models of different cells relevant to pancreatic ductal adenocarcinoma (PDAC), we built an agent-based model of the multicellular pancreatic tumor microenvironment, formally describing cell type–specific molecular interactions and cytokine-mediated cell-cell communications. We used an ensemble-based modeling approach to systematically explore how variations in the tumor microenvironment affect the viability of cancer cells. The results suggest that the autocrine loop involving EGF signaling is a key interaction modulator between pancreatic cancer and stellate cells. EGF is also found to be associated with previously described subtypes of PDAC. Moreover, the model allows a systematic exploration of the effect of possible therapeutic perturbations; our simulations suggest that reducing bFGF secretion by stellate cells will have, on average, a positive impact on cancer apoptosis. Conclusions The developed framework allows model-driven hypotheses to be generated regarding therapeutically relevant PDAC states with potential molecular and cellular drivers indicating specific intervention strategies.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ritu Pandey ◽  
Muhan Zhou ◽  
Shariful Islam ◽  
Baowei Chen ◽  
Natalie K Barker ◽  
...  

AbstractWe investigated biomarker CEACAM6, a highly abundant cell surface adhesion receptor that modulates the extracellular matrix (ECM) in pancreatic ductal adenocarcinoma (PDA). The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) RNA-Seq data from PDA patients were analyzed for CEACAM6 expression and evaluated for overall survival, association, enrichment and correlations. A CRISPR/Cas9 Knockout (KO) of CEACAM6 in PDA cell line for quantitative proteomics, mitochondrial bioenergetics and tumor growth in mice were conducted. We found CEACAM6 is over-expressed in primary and metastatic basal and classical PDA subtypes. Highest levels are in classical activated stroma subtype. CEACAM6 over-expression is universally a poor prognostic marker in KRAS mutant and wild type PDA. High CEACAM6 expression is associated with low cytolytic T-cell activity in both basal and classical PDA subtypes and correlates with low levels of T-REG markers. In HPAF-II cells knockout of CEACAM6 alters ECM-cell adhesion, catabolism, immune environment, transmembrane transport and autophagy. CEACAM6 loss increases mitochondrial basal and maximal respiratory capacity. HPAF-II CEACAM6−/− cells are growth suppressed by >65% vs. wild type in mice bearing tumors. CEACAM6, a key regulator affects several hallmarks of PDA including the fibrotic reaction, immune regulation, energy metabolism and is a novel therapeutic target in PDA.


2020 ◽  
Vol 19 ◽  
pp. 153303382092096
Author(s):  
Hongzhi Sun ◽  
Bo Zhang ◽  
Haijun Li

Pancreatic ductal adenocarcinoma has extremely high malignancy and patients with pancreatic ductal adenocarcinoma have dismal prognosis. The failure of pancreatic ductal adenocarcinoma treatment is largely due to the tumor microenvironment, which is featured by ample stromal cells and complicated extracellular matrix. Recent genomic analysis revealed that pancreatic ductal adenocarcinoma harbors frequently mutated genes including KRAS, TP53, CDKN2A, and SMAD4, which can widely alter cellular processes and behaviors. As shown by accumulating studies, these mutant genes may also change tumor microenvironment, which in turn affects pancreatic ductal adenocarcinoma progression. In this review, we summarize the role of such genetic mutations in tumor microenvironment regulation and potential mechanisms.


2011 ◽  
Vol 17 (22) ◽  
pp. 7015-7023 ◽  
Author(s):  
David Z. Chang ◽  
Ying Ma ◽  
Baoan Ji ◽  
Huamin Wang ◽  
Defeng Deng ◽  
...  

2020 ◽  
Author(s):  
S. Mahnaz ◽  
L. Das Roy ◽  
M. Bose ◽  
C. De ◽  
S. Nath ◽  
...  

ABSTRACTMyeloid-derived suppressor cells (MDSCs) are immature myeloid cells that are responsible for immunosuppression in tumor microenvironment. Here we report the impact of mucin 1 (MUC1), a transmembrane glycoprotein, on proliferation and functional activity of MDSCs. To determine the role of MUC1 in MDSC phenotype, we analyzed MDSCs derived from wild type (WT) and MUC1-knockout (MUC1KO) mice bearing pancreatic ductal adenocarcinoma KCKO and breast cancer C57MG xenografts. We observed enhanced tumor growth in MUC1KO mice compared to WT mice in both pancreatic KCKO and breast C57MG cancer models due to increased MDSC population and enrichment of Tregs in tumor microenvironment. Our current study shows that knockdown of MUC1 in MDSCs promotes proliferation and immature suppressive phenotype indicated by increased level of iNOS, ARG1 activity and TGF-β secretion under cancer conditions. Increased activity of MDSCs leads to repression of IL-2 and IFN-ɣ production by T-cells. We were able to find that MDSCs from MUC1KO mice have higher levels of c-Myc and activated pSTAT3 as compared to MUC1 WT mice, that are signaling pathways leading to increased survival, proliferation and prevention of maturation. In summary, MUC1 regulates signaling pathways that maintain immunosuppressive properties of MDSCs. Thus, immunotherapy must target only tumor associated MUC1 on epithelial cells and not MUC1 on hematopoietic cells to avoid expansion and suppressive functions of MDSC.


Author(s):  
Dongliang Liu ◽  
Ethan Poteet ◽  
Zhengdong Liang ◽  
Emily Laplante ◽  
Lisa Brubaker ◽  
...  

Gut ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 148-156 ◽  
Author(s):  
Claudio Luchini ◽  
Lodewijk A A Brosens ◽  
Laura D Wood ◽  
Deyali Chatterjee ◽  
Jae Il Shin ◽  
...  

ObjectiveRecently, tumours with microsatellite instability (MSI)/defective DNA mismatch repair (dMMR) have gained considerable interest due to the success of immunotherapy in this molecular setting. Here, we aim to clarify clinical-pathological and/or molecular features of this tumour subgroup through a systematic review coupled with a comparative analysis with existing databases, also providing indications for a correct approach to the clinical identification of MSI/dMMR pancreatic ductal adenocarcinoma (PDAC).DesignPubMed, SCOPUS and Embase were searched for studies reporting data on MSI/dMMR in PDAC up to 30 November 2019. Histological and molecular data of MSI/dMMR PDAC were compared with non-MSI/dMMR PDAC and with PDAC reference cohorts (including SEER database and The Cancer Genome Atlas Research Network - TCGA project).ResultsOverall, 34 studies with 8323 patients with PDAC were included in the systematic review. MSI/dMMR demonstrated a very low prevalence in PDAC (around 1%–2%). Compared with conventional PDAC, MSI/dMMR PDAC resulted strongly associated with medullary and mucinous/colloid histology (p<0.01) and with a KRAS/TP53 wild-type molecular background (p<0.01), with more common JAK genes mutations. Data on survival are still unclear.ConclusionPDAC showing typical medullary or mucinous/colloid histology should be routinely examined for MSI/dMMR status using specific tests (immunohistochemistry, followed by MSI-PCR in cases with doubtful results). Next-generation sequencing (NGS) should be adopted either where there is limited tissue or as part of NGS tumour profiling in the context of precision oncology, acknowledging that conventional histology of PDAC may rarely harbour MSI/dMMR.


Sign in / Sign up

Export Citation Format

Share Document