Gene expression profiling of the bone marrow mononuclear cells from patients with myelodysplastic syndrome

2005 ◽  
Author(s):  
Jun Qian ◽  
Zixing Chen ◽  
Wei Wang ◽  
Jiannong Cen ◽  
Yongquan Xue
Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3857-3857
Author(s):  
Andrea Pellagatti ◽  
Axel Benner ◽  
Ken I Mills ◽  
Mario Cazzola ◽  
Aristoteles Giagounidis ◽  
...  

Abstract Abstract 3857 The diagnosis of patients with myelodysplastic syndromes (MDS) is largely dependent on morphologic examination of bone marrow aspirates. Several criteria that form the basis of the classifications and scoring systems most commonly used in clinical practice are affected by operator-dependent variation. In order to identify more standardized molecular markers that would allow a more reliable prediction of prognosis, we have used gene expression profiling (GEP) data on CD34+ cells from MDS patients to determine the relationship between gene expression levels and prognosis in this disorder. GEP data on CD34+ cells from 125 MDS patients with a minimum 12-month follow-up since date of bone marrow sample collection were included in this study. Prediction for overall survival was performed using supervised principal components (“SuperPC”) and lasso penalized Cox proportional hazards regression applying the “Coxnet” algorithm. Supervised principal components analysis was performed on patients randomly split in a training set (n=84) and a test set (n=41), and 139 genes were identified the expression of which was significantly associated with MDS patient survival, including LEF1, CDH1, WT1 and MN1. In order to identify a smaller set of genes associated with patient survival, a second approach aiming at building sparse prediction models was used. A model was generated using the Coxnet algorithm and a predictor consisting of 20 genes was identified. Eight genes identified by the supervised principal components method were in common with the genes identified by the Coxnet model: ADHFE1, BTBD6, CPT1B, LEF1, FRMD6, GPR114, C7orf58 and LOC100286844. The Coxnet predictor outperformed other predictors including one which additionally used clinical information. To validate our findings, we evaluated the performance of our prognostic Coxnet gene signature in an independent gene expression profiling dataset on MDS bone marrow mononuclear cells (Mills et al, Gene Expression Omnibus series GSE15061). Our Coxnet gene signature based on CD34+ cells significantly identified a low-risk patient group in this independent GEP dataset based on unsorted bone marrow mononuclear cells, demonstrating that our signature is robust and may be applicable to bone marrow cells without the need to isolate CD34+ cells. These GEP-based signatures correlating with clinical outcome may significantly contribute to a refined risk classification of MDS. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 70 (15-16) ◽  
pp. 1264-1277 ◽  
Author(s):  
Kyung Taek Rim ◽  
Kun Koo Park ◽  
Yang Ho Kim ◽  
Yong Hwan Lee ◽  
Jeong Hee Han ◽  
...  

2017 ◽  
Vol 60 (6) ◽  
pp. 326-334 ◽  
Author(s):  
Carla Martins Kaneto ◽  
Patrícia S. Pereira Lima ◽  
Karen Lima Prata ◽  
Jane Lima dos Santos ◽  
João Monteiro de Pina Neto ◽  
...  

BMC Genomics ◽  
2011 ◽  
Vol 12 (1) ◽  
pp. 461 ◽  
Author(s):  
Adriane Menssen ◽  
Thomas Häupl ◽  
Michael Sittinger ◽  
Bruno Delorme ◽  
Pierre Charbord ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3497-3497
Author(s):  
Marc J. Braunstein ◽  
Daniel R. Carrasco ◽  
David Kahn ◽  
Kumar Sukhdeo ◽  
Alexei Protopopov ◽  
...  

Abstract In multiple myeloma (MM), bone marrow-derived endothelial progenitor cells (EPCs) contribute to tumor neoangiogenesis and their levels covary with tumor mass and prognosis. Recent X-chromosome inactivation studies in female patients showed that, similar to tumor cells, EPCs are clonally restricted in MM. Genomic profiling of MM using high-resolution array comparative genomic hybridization (aCGH) has been previously utilized to mine the genome and find clinical correlates in MM patients. In this study, clonotypic aspects of bone marrow-derived EPCs and MM cells were investigated using aCGH and expression profiling analysis. Confluent EPCs were outgrown from bone marrow aspirates by adherence to laminin. EPCs were >98% vWF/CD133/KDR+ and <1% CD38+. The laminin-nonadherent bone marrow fraction enriched for tumor cells was >50% CD38+. For aCGH and for gene expression profiling, genomic DNA and total RNA from EPCs and MM cells were hybridized to human oligonucleotide arrays (Agilent Technologies) and human cDNA microarrays (Affymetrix), respectively. High resolution aCGH with segmentation analysis showed that EPCs and MM cells in one of ten cases share identical patterns of chromosomal gains and losses, while another 5 cases shared multiple focal copy number alterations (CNAs) including gains and losses. The genomes of EPCs and MM cells additionally displayed exclusive CNAs, but these were far fewer in EPCs than in MM cells. In 3 patients, EPCs harbored a common 0.6Mb deletion at 1q21 not shared by MM cells. Pertinent genes in this region that could affect proliferation and tumor suppression include N2N, NBPF10, and TXNIP. Validation studies of aCGH findings by other methods are ongoing. Gene expression profiling showed decreased expression of 1q21 region genes (e.g., calgranulin C and lamin A/C). A genome-wide comparison of patients’ MM cells and EPCs, which is focused on their shared genetic characteristics, will be presented.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2383-2383
Author(s):  
Alexander Kohlmann ◽  
Elisabeth Haschke-Becher ◽  
Barbara Wimmer ◽  
Ariana Huber-Wechselberger ◽  
Sandrine Meyer-Monard ◽  
...  

Abstract Gene expression profiling has the potential to offer consistent objective diagnostic test results once a standardized protocol is established. We investigated the robustness, precision, and reproducibility of this technology and present data that complements the Microarray Innovations in LEukemia study (MILE study). In four laboratories, located in Germany (D), Austria (A), and Switzerland (CH) (DACH study), replicates of 112 patient samples were analyzed using the AmpliChip Leukemia research test. Patient samples were centrally collected and diagnosed in daily routine at the Munich Leukemia Laboratory and represented 8 distinct classes of acute and chronic leukemias, with non-leukemia as control group. After purification of the mononuclear cells by Ficoll density centrifugation, 4 × 5 million cells were frozen in lysis buffer and stored at −80°C. Equipped with identical instruments, software, and reagents, study operators were trained on the microarray sample preparation protocol using total RNA from commercially available cell lines. Upon receipt of the frozen lysates each of the four laboratories purified the total RNA from the 112 technical quadruplicates. 99.3% (445/448) of the sample preparations were successfully performed. On average, 8.4 μg, 7.2 μg, 7.4 μg, or 7.5 μg of total RNA, respectively, were isolated from the mononuclear cells from the four laboratories. In three samples less than 1.0 μg of total RNA was obtained and thus the preparation failed. Bland-Altman plots of agreement showed that any two centers were unlikely to have more than an 8.3 μg difference in yield of total RNA from the same sample. On average there was between 0.1 μg to 1.2 μg difference in total RNA yield from the same sample. Further processing of the 445 samples resulted in 437 (98.2%) successfully performed in vitro transcription reactions, i.e. obtained cRNA yield of &gt;8.0 μg. On average there was between 0.4 μg to 7.4 μg difference in cRNA yield from the same sample. After hybridization to microarrays on average, 46.1%, 48.6%, 46.5%, and 47.3% of probe sets were detected as present with mean scaling factors of 4.3, 2.9, 3.9, and 3.7, respectively. The mean values and standard deviations of distributions of the coefficient of variation (CV) within each site over all the probe sets of the quantile normalized signals on the chip were 27.2% (StdDev: 12.3%), 27.0% (StdDev: 12.3%), 27.3% (StdDev: 12.3%), 26.9% (StdDev: 12.4%), respectively. Furthermore, in unsupervised hierarchical cluster and principal component analyses replicates from the same patient always clustered closely together, with no indications of association between gene expression profiles due to different operators or laboratories. In conclusion, we demonstrated that microarray analysis can be performed with remarkably high inter-laboratory reproducibility and with comparable quality and high technical precision across laboratories.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 506-506
Author(s):  
Joachim Weischenfeldt ◽  
Inge Damgaard ◽  
David Bryder ◽  
Claus Nerlov ◽  
Bo Porse

Abstract Nonsense-mediated mRNA decay (NMD) is a conserved cellular surveillance system that degrades mRNAs with premature termination codons (PTCs). PTC-containing transcripts can arise from faulty events such as erroneous mRNA processing events as well as mutations, and their translation may lead to the synthesis of deleterious proteins. In addition to serving as a genomic protection system, experiments in tissue culture cells have demonstrated that NMD regulates 5% of the normal mRNA pool suggesting that the NMD pathway may have a broader role in gene regulation. Finally, NMD has also been proposed to be important during lymphocyte development as a tool of riding the cells of transcripts resulting from unproductive re-arrangements events of T cell receptor and immunoglobulin genes. Although NMD has been studied extensively at the biochemical level, the actual role and importance of NMD in the mammalian organism has not been investigated. We therefore generated a conditional Upf2 knock-out mouse line (UPF2 being an essential NMD factor) which we crossed to different hematopoietic relevant Cre expressing lines. Full ablation of UPF2 (using the inducible Mx1-Cre deleter) led to complete loss of all nucleated cells in the bone marrow and death of the animals within 10 days. A similar phenotype was observed when Upf2fl/fl; Mx1Cre BM cells were transplanted into lethally irradiated WT recipients and induced with poly-IC, demonstrating the cell autonomous nature of the phenotype. Deletion of UPF2 in the myeloid lineage using the LysM-Cre deleter resulted in efficient ablation of UPF2 and the absence of NMD in reporter transfected bone marrow derived macrophages (BMDMs). However, the steady state levels of myeloid cells appeared unaltered. Finally, deletion of UPF2 in T cells using a Lck-Cre deleter led to a marked reduction of both CD4/CD8 double-positive and single-positive T cells and accumulation of PTC containing transcripts. Gene expression profiling experiments of BMDM and thymocytes from WT and UPF2-ablated animals identified a common core set of 27 up-regulated genes consistent with the role of NMD as a mRNA degrading system. The gene expression profiling data suggest that ablation of NMD leads to accumulation of unfolded proteins. In summary, these studies demonstrate the vital and cell-autonomous role of NMD in the hematopoietic system.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2781-2781
Author(s):  
Wolf-Karsten Hofmann ◽  
Florian Nolte ◽  
Ouidad Benlasfer ◽  
Eckhard Thiel ◽  
Gerhard Ehninger ◽  
...  

Abstract Abstract 2781 Poster Board II-757 Lenalidomide belongs to a proprietary class of immunmodulatory drugs showing therapeutic activity in patients with myelodysplastic syndrome (MDS), in particular in those having the 5q-abnormality, but also in patients not showing this cytogenetical aberration. In 2008, Ebert et al. (PLos Med. 2, e35) could demonstrate that there is a specific gene expression profile in bone marrow cells collected from MDS-patients either with 5q- syndrome as well as MDS-patients having no 5q-abnormality which is strongly correlated with the clinical response to treatment with lenalidomide. Whereas this finding is not of clinical importance in patients with MDS del 5q (overall response 75 %) it may play a pivotal role for prediction of clinical response to lenalidomide in non-del 5q MDS-patients. Therefore, we have studied gene expression profile (HG-U133plus2.0, Affymetrix, Santa Clara, CA) of routinely isolated low-density mononuclear bone marrow cells from 8 patients with IPSS low/int-1 risk MDS having no deletion on chromosome 5 but were subsequently treated with lenalidomide 5 mg/day. All of the patients were transfusion dependent for red blood cells. The median duration of treatment with lenalidomide was 22 weeks. RNA was extracted by Trizol and quality controlled by using a Bioanalyzer 2100 system (Agilent, Waldborn, Germany) to exclude RNA degradation. Microarray hybridization was performed according to the standard Affymetrix protocol. Data were analyzed by Microarray Analysis Suites 5.0 (MAS 5.0; Affymetrix) and GeneSpring (Agilent Technologies, Santa Clara, CA). For clustering analysis we utilized the gene list of 68 discriminating genes as published by Ebert et al. the molecular analysis did clearly separate two groups of patients having specific gene expression profiles according to the responder/non-responder group as published previously. Furthermore, single sample prediction could discriminate three out of 8 patients to be possible responders to lenalidomide but this was not correlated to the clinical course of those patients while on treatment with lenalidomide. However, none of the MDS-patients receiving lenalidomide did show significant clinical response as defined by reduction of transfusion requirement by 50 % or transfusion independence. In conclusion, prediction of response to lenalidomide in non-del 5q patients by gene expression profiling so far remains critical. Prospective analysis of molecular changes including DNA analysis in larger clinical trials using lenalidomide in non-del 5q MDS-patients are required to establish reliable predictive markers in MDS. Disclosures: Hofmann: Celgene: Research Funding. Platzbecker:Celgene: Research Funding.


2007 ◽  
Vol 31 ◽  
pp. S79-S80
Author(s):  
A. Kracmarova ◽  
H. Bruchova ◽  
M. Belickova ◽  
J. van Delft ◽  
J. Cermak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document