scholarly journals State of the Art in Computational Bioacoustics and Machine Learning: How far have we come?

Author(s):  
Dan Stowell

Terrestrial bioacoustics, like many other domains, has recently witnessed some transformative results from the application of deep learning and big data (Stowell 2017, Mac Aodha et al. 2018, Fairbrass et al. 2018, Mercado III and Sturdy 2017). Generalising over specific projects, which bioacoustic tasks can we consider "solved"? What can we expect in the near future, and what remains hard to do? What does a bioacoustician need to understand about deep learning? This contribution will address these questions, giving the audience a concise summary of recent developments and ways forward. It builds on recent projects and evaluation campaigns led by the author (Stowell et al. 2015, Stowell et al. 2018), as well as broader developments in signal processing, machine learning and bioacoustic applications of these. We will discuss which type of deep learning networks are appropriate for audio data, how to address zoological/ecological applications which often have few available data, and issues in integrating deep learning predictions with existing workflows in statistical ecology.

2021 ◽  
Vol 54 (6) ◽  
pp. 1-35
Author(s):  
Ninareh Mehrabi ◽  
Fred Morstatter ◽  
Nripsuta Saxena ◽  
Kristina Lerman ◽  
Aram Galstyan

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.


Author(s):  
Myeong Sang Yu

The revolutionary development of artificial intelligence (AI) such as machine learning and deep learning have been one of the most important technology in many parts of industry, and also enhance huge changes in health care. The big data obtained from electrical medical records and digitalized images accelerated the application of AI technologies in medical fields. Machine learning techniques can deal with the complexity of big data which is difficult to apply traditional statistics. Recently, the deep learning techniques including convolutional neural network have been considered as a promising machine learning technique in medical imaging applications. In the era of precision medicine, otolaryngologists need to understand the potentialities, pitfalls and limitations of AI technology, and try to find opportunities to collaborate with data scientists. This article briefly introduce the basic concepts of machine learning and its techniques, and reviewed the current works on machine learning applications in the field of otolaryngology and rhinology.


Author(s):  
Jakub M Bartoszewicz ◽  
Anja Seidel ◽  
Robert Rentzsch ◽  
Bernhard Y Renard

Abstract Motivation We expect novel pathogens to arise due to their fast-paced evolution, and new species to be discovered thanks to advances in DNA sequencing and metagenomics. Moreover, recent developments in synthetic biology raise concerns that some strains of bacteria could be modified for malicious purposes. Traditional approaches to open-view pathogen detection depend on databases of known organisms, which limits their performance on unknown, unrecognized and unmapped sequences. In contrast, machine learning methods can infer pathogenic phenotypes from single NGS reads, even though the biological context is unavailable. Results We present DeePaC, a Deep Learning Approach to Pathogenicity Classification. It includes a flexible framework allowing easy evaluation of neural architectures with reverse-complement parameter sharing. We show that convolutional neural networks and LSTMs outperform the state-of-the-art based on both sequence homology and machine learning. Combining a deep learning approach with integrating the predictions for both mates in a read pair results in cutting the error rate almost in half in comparison to the previous state-of-the-art. Availability and implementation The code and the models are available at: https://gitlab.com/rki_bioinformatics/DeePaC. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


2020 ◽  
Author(s):  
Pathikkumar Patel ◽  
Bhargav Lad ◽  
Jinan Fiaidhi

During the last few years, RNN models have been extensively used and they have proven to be better for sequence and text data. RNNs have achieved state-of-the-art performance levels in several applications such as text classification, sequence to sequence modelling and time series forecasting. In this article we will review different Machine Learning and Deep Learning based approaches for text data and look at the results obtained from these methods. This work also explores the use of transfer learning in NLP and how it affects the performance of models on a specific application of sentiment analysis.


2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


Author(s):  
Xabier Rodríguez-Martínez ◽  
Enrique Pascual-San-José ◽  
Mariano Campoy-Quiles

This review article presents the state-of-the-art in high-throughput computational and experimental screening routines with application in organic solar cells, including materials discovery, device optimization and machine-learning algorithms.


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 39
Author(s):  
Carlos Lassance ◽  
Vincent Gripon ◽  
Antonio Ortega

Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists of training composite architectures in an end-to-end fashion, where inputs are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more detail, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: (i) reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, (ii) designing efficient embeddings for classification is achieved by targeting specific geometries, and (iii) robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the proposed geometry-based methods in solving the considered problems.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Ramin Keivani ◽  
Sina Faizollahzadeh Ardabili ◽  
Farshid Aram

Deep learning (DL) and machine learning (ML) methods have recently contributed to the advancement of models in the various aspects of prediction, planning, and uncertainty analysis of smart cities and urban development. This paper presents the state of the art of DL and ML methods used in this realm. Through a novel taxonomy, the advances in model development and new application domains in urban sustainability and smart cities are presented. Findings reveal that five DL and ML methods have been most applied to address the different aspects of smart cities. These are artificial neural networks; support vector machines; decision trees; ensembles, Bayesians, hybrids, and neuro-fuzzy; and deep learning. It is also disclosed that energy, health, and urban transport are the main domains of smart cities that DL and ML methods contributed in to address their problems.


Sign in / Sign up

Export Citation Format

Share Document