scholarly journals Accelerating organic solar cell material's discovery: high-throughput screening and big data

Author(s):  
Xabier Rodríguez-Martínez ◽  
Enrique Pascual-San-José ◽  
Mariano Campoy-Quiles

This review article presents the state-of-the-art in high-throughput computational and experimental screening routines with application in organic solar cells, including materials discovery, device optimization and machine-learning algorithms.

Author(s):  
Alja Videtič Paska ◽  
Katarina Kouter

In psychiatry, compared to other medical fields, the identification of biological markers that would complement current clinical interview, and enable more objective and faster clinical diagnosis, implement accurate monitoring of treatment response and remission, is grave. Current technological development enables analyses of various biological marks in high throughput scale at reasonable costs, and therefore ‘omic’ studies are entering the psychiatry research. However, big data demands a whole new plethora of skills in data processing, before clinically useful information can be extracted. So far the classical approach to data analysis did not really contribute to identification of biomarkers in psychiatry, but the extensive amounts of data might get to a higher level, if artificial intelligence in the shape of machine learning algorithms would be applied. Not many studies on machine learning in psychiatry have been published, but we can already see from that handful of studies that the potential to build a screening portfolio of biomarkers for different psychopathologies, including suicide, exists.


2019 ◽  
Author(s):  
Enrique Pascual-San-José ◽  
Xabier Rodríguez-Martínez ◽  
Fei Zhuping ◽  
Martin Heeney ◽  
Roger Guimerà-Manrique ◽  
...  

2019 ◽  
Vol 10 (36) ◽  
pp. 8374-8383 ◽  
Author(s):  
Mohammad Atif Faiz Afzal ◽  
Aditya Sonpal ◽  
Mojtaba Haghighatlari ◽  
Andrew J. Schultz ◽  
Johannes Hachmann

Computational pipeline for the accelerated discovery of organic materials with high refractive index via high-throughput screening and machine learning.


2017 ◽  
Vol 47 (10) ◽  
pp. 2625-2626 ◽  
Author(s):  
Fuchun Sun ◽  
Guang-Bin Huang ◽  
Q. M. Jonathan Wu ◽  
Shiji Song ◽  
Donald C. Wunsch II

2021 ◽  
Author(s):  
Jeremy Feinstein ◽  
ganesh sivaraman ◽  
Kurt Picel ◽  
Brian Peters ◽  
Alvaro Vazquez-Mayagoitia ◽  
...  

In this article, we present our recent study on computational methodology for predicting the toxicity of PFAS known as “forever chemicals” based on chemical structures through evaluation of multiple machine learning methods. To address the scarcity of PFAS toxicity data, a deep “transfer learning” method has been investigated by leveraging toxicity information over the entire organic chemical domain and an uncertainty-informed workflow by incorporating SelectiveNet architecture, which can support future guidance of high throughput screening with knowledge of chemical structures, has been developed.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yao Huimin

With the development of cloud computing and distributed cluster technology, the concept of big data has been expanded and extended in terms of capacity and value, and machine learning technology has also received unprecedented attention in recent years. Traditional machine learning algorithms cannot solve the problem of effective parallelization, so a parallelization support vector machine based on Spark big data platform is proposed. Firstly, the big data platform is designed with Lambda architecture, which is divided into three layers: Batch Layer, Serving Layer, and Speed Layer. Secondly, in order to improve the training efficiency of support vector machines on large-scale data, when merging two support vector machines, the “special points” other than support vectors are considered, that is, the points where the nonsupport vectors in one subset violate the training results of the other subset, and a cross-validation merging algorithm is proposed. Then, a parallelized support vector machine based on cross-validation is proposed, and the parallelization process of the support vector machine is realized on the Spark platform. Finally, experiments on different datasets verify the effectiveness and stability of the proposed method. Experimental results show that the proposed parallelized support vector machine has outstanding performance in speed-up ratio, training time, and prediction accuracy.


2020 ◽  
Author(s):  
Xinzhe Zhu ◽  
Chi-Hung Ho ◽  
Xiaonan Wang

<p><a></a><a>The production process of many active pharmaceutical ingredients such as sitagliptin could cause severe environmental problems due to the use of toxic chemical materials and production infrastructure, energy consumption and wastes treatment. The environmental impacts of sitagliptin production process were estimated with life cycle assessment (LCA) method, which suggested that the use of chemical materials provided the major environmental impacts. Both methods of Eco-indicator 99 and ReCiPe endpoints confirmed that chemical feedstock accounted 83% and 70% of life-cycle impact, respectively. Among all the chemical materials used in the sitagliptin production process, </a><a>trifluoroacetic anhydride </a>was identified as the largest influential factor in most impact categories according to the results of ReCiPe midpoints method. Therefore, high-throughput screening was performed to seek for green chemical substitutes to replace the target chemical (i.e. trifluoroacetic anhydride) by the following three steps. Firstly, thirty most similar chemicals were obtained from two million candidate alternatives in PubChem database based on their molecular descriptors. Thereafter, deep learning neural network models were developed to predict life-cycle impact according to the chemicals in Ecoinvent v3.5 database with known LCA values and corresponding molecular descriptors. Finally, 1,2-ethanediyl ester was proved to be one of the potential greener substitutes after the LCA data of these similar chemicals were predicted using the well-trained machine learning models. The case study demonstrated the applicability of the novel framework to screen green chemical substitutes and optimize the pharmaceutical manufacturing process.</p>


Sign in / Sign up

Export Citation Format

Share Document