scholarly journals Justification of technological parameters of the cream production with sapropel extract

Pharmacia ◽  
2019 ◽  
Vol 66 (1) ◽  
pp. 19-25
Author(s):  
Oksana Strus ◽  
Nataliia Polovko ◽  
Oksana Yezerska

The aim of the research was to substantiate the technological parameters of cream production with the sapropel extract and work out the technological scheme for its production. In this study, extract of sapropel from the Prybych deposit, emulsion base, containing corn oil, emulsifier No.1, cetylstearyl alcohol, nisin, euxyl K 100 and purified water were employed. To carry out the research, a set of methods to analyse colloidal and thermal stability was used. Rheological properties of the samples were determined. The method of microscopic analysis was carried out to analyse the stability of the emulsion system. It was proved experimentally that, when producing the cream, it is appropriate to use the phase inversion method, and the emulsification needs to be carried out at 5000 r/m for 20 min. Size and shape of the sample drops, obtained at 5000 r/m, were monodisperse and more uniform, most of which range from 2 to 3 microns that indicates the system stability. The following parameters of technological process were determined: mixing temperature conditions, speed of homogenisation and mixing time.

2021 ◽  
Vol 12 (2-2021) ◽  
pp. 174-176
Author(s):  
E. V. Mishchenko ◽  
◽  
E. E. Timofeeva ◽  
A. S. Artamonov ◽  
M. Yu. Koroleva ◽  
...  

This work presents the results of a study on the effect of ionic surfactant cetriltrimethylammonium chloride (CTAB) on the size and ζ-potential of lipid nanoemulsions composed of oleic acid, prepared by temperature phase inversion method and stabilized by nonionic surfactants — Tween 60, Span 60


Author(s):  
Yuxin Pan ◽  
Kai Pei ◽  
Yucun Zhou ◽  
Tong Liu ◽  
Meilin Liu ◽  
...  

A straight, open and macro-porous Ni–BaZr0.1Ce0.7Y0.1Yb0.1O3 fuel electrode-supported protonic ceramic electrochemical cell has been fabricated by a modified phase-inversion method.


Polymer ◽  
2013 ◽  
Vol 54 (18) ◽  
pp. 4807-4813 ◽  
Author(s):  
Yan Ren ◽  
Fang Lian ◽  
Yan Wen ◽  
Hong-Yan Guan

Food Research ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 1025-1029
Author(s):  
Y.P. Sari ◽  
S. Raharjo ◽  
U. Santoso ◽  
Supriyadi

Rice bran oil (RBO) contains naturally occurring antioxidants such as carotenoids, tocopherol, and γ-oryzanol. The aim of this research was to formulate and evaluate the characteristics of nanoemulsion which was prepared using RBO containing naturally occurring antioxidants. The RBO-in-water nanoemulsion was prepared by the emulsion phase inversion method. The oil phase of the nanoemulsion was prepared by either virgin coconut oil (VCO) or palm oil (PO) combined with RBO with the ratio of 5:5; 4:6, 3:7, 2:8 and 0:10. Tween 80 was used as a surfactant. The surfactant to oil ratios was predetermined at 2.5:1.0 and 3.0:1.0. The aqueous phase (80% w/w) was titrated into an organic phase that consisted of Tween 80 and oil phase (approximately 20% w/w). Droplet size, zeta-potential and polydispersity index of the nanoemulsion were used as the main parameters. The results showed that the smallest droplet (<100 nm) of the nanoemulsion was obtained when the ratio of VCO: RBO at 3:7 and the ratio of PO: RBO at 4:6 with the surfactant to oil ratio (SOR) was 2.5. Nanoemulsion with a relatively small polydispersity index of 0.3 was achieved when the ratio of PO: RBO was 3:7 and SOR at 3. All of the freshly prepared RBO containing nanoemulsion have good stability with zetapotential values of < -30 mV. Nanoemulsions were stable against centrifugation at 2300 rpm for 15 mins, but they were not stable against heating at 105°C for 5 hrs. The RBO-inwater nanoemulsion could be successfully prepared by phase inversion method, by combining RBO with either VCO or PO at different ratios.


2018 ◽  
Vol 18 (2) ◽  
pp. 257 ◽  
Author(s):  
Nita Kusumawati ◽  
Pirim Setiarso ◽  
Maria Monica Sianita ◽  
Supari Muslim

Asymmetric polysulfone (PSf) membrane is prepared using phase inversion method and blending with polyvinylidene fluoride (PVDF) on the gauze solid support. Casting solution composition optimization has been done to get PSf/PVDF membrane with best characteristics and permeability. The result shows that blending on PSf with PVDF polymer using phase inversion method has been very helpful in creating an asymmetric porous membrane. Increased level of PVDF in casting solution has increased the formation of asymmetry structure and corresponding flux membrane. The result from thermal test using Differential Scanning Calorimetry (DSC)-Thermal Gravimetric Analysis (TGA) shows the resistance of the membrane to temperature 460 °C. Membrane resistance against acid looks from undetectable changes on infrared spectra after immersion process in H2SO4 6–98 v/v%. While membrane color changes from white to brownish and black is detected after the immersion process in sodium hydroxide (NaOH) 0.15–80 w/v%.


Sign in / Sign up

Export Citation Format

Share Document