scholarly journals Effects of habitat heterogeneity on epiedaphic Collembola (Arthropoda: Hexapoda) in a semiarid ecosystem in Northeast Brazil

2018 ◽  
Vol 35 ◽  
pp. 1-5 ◽  
Author(s):  
Aila Soares Ferreira ◽  
Isabel Medeiros dos Santos Rocha ◽  
Bruno Cavalcante Bellini ◽  
Alexandre Vasconcellos

The spatial distribution of abiotic resources and environmental conditions can vary at small scales within terrestrial ecosystems, influencing the composition of soil fauna. Epiedaphic springtails (Collembola) of a semiarid Caatinga ecosystem were studied to determine if factors related to vegetation structure, such as species richness, aerial biomass, litterfall, and soil characteristics (pH, granulometry and soil organic matter), influence species richness and abundance of this group. A total of 5,513 individuals were collected of 15 species distributed in 13 genera and 9 families. The most abundant species wereTemeritassp., with 2,086 (38% of the total abundance) individuals, andNeotropiellameridionalis(Arlé, 1939), with 1,911 (35% of the total abundance) individuals. None of the variables in the regression model were significantly related to Collembola species richness, but abundance was significantly related to plant species richness, aerial biomass and soil pH. Thus, even at a small spatial scale, habitat heterogeneity influences the epiedaphic Collembola in the Caatinga ecosystem, especially their abundance.

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Thomas Francis Lado ◽  
David Gwolo Phanuel Mogga ◽  
Richard Angelo Lado Benjamin

The study was carried out to determine patterns of birds’ species richness, alpha and beta diversities; and abundance in Badingilo national park using a 10 m fixed-radius point count method. A total of 2670 individuals were recorded from 182 points in the park. The highest expected number of species (Jack1 estimator) was observed in the Riverine habitat and least was in the Agriculture and Human settlement habitat type. The total number of species observed in the park was 63; however Jack1 estimator indicated that there were 68 species in the park. The majority of the birds observed during the study were resident species, few migratory and Palaearctic bird species. Few birds observed in the park were abundant. The most abundant species was the village weaver (381 individuals), and the rarest species were black-bellied bustard, barn owl, black scimitar bill and tree pipit (one individual each).


Sociobiology ◽  
2017 ◽  
Vol 64 (1) ◽  
pp. 69
Author(s):  
Cândida Maria Lima Aguiar ◽  
Shantala Lua ◽  
Maise Silva ◽  
Paulo Enrique Cardoso Peixoto ◽  
Heiddy M Alvarez ◽  
...  

Variations in abundance and species richness among communities are often determined by interactions between biotic and abiotic factors. However, for communities composed of species that share a common specialization (such as similar foraging adaptations) it may be a key ecological factor involved in the common specialization that affects community variations. To evaluate this possibility, we characterized the guild of oil-collecting bees of a Neotropical savanna in Brazil and tested whether differences in Byrsonima abundance and availability of floral oil explain differences in species richness and abundance of oil-collecting bees of different tribes. Both the number of species and total abundance of Centridini species increased with the abundance of Byrsonima. One plausible explanation for the stronger adjustment between the abundance of Centridini and Byrsonima is that the abundance of these plants affects not only the availability of floral oil, but also of pollen. These findings indicate that the existence of a common specialization among different species does not homogenize their response to variations in a common explored resource.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
David H. Branson

A continuing challenge in orthopteran ecology is to understand what determines grasshopper species diversity at a given site. In this study, the objective was to determine if variation in grasshopper abundance and diversity between 23 sites in western North Dakota (USA) could be explained by variation in plant species richness and diversity. In this system with relatively low plant diversity, grasshopper species richness and abundance were not significantly associated with plant species richness in either year. Although a number of significant associations between plant diversity and grasshopper diversity were found through regression analyses, results differed greatly between years indicating that plant species richness and diversity did not lead to strong effects on grasshopper diversity metrics. Plant species richness appears to be too coarse grained to lead to accurate predictions of grasshopper species richness in this system dominated by generalist grasshopper species.


2009 ◽  
Vol 66 (2) ◽  
pp. 277-290 ◽  
Author(s):  
Jesse R. Fischer ◽  
Craig P. Paukert

We estimated the sampling effort required to accurately estimate species richness and to detect changes in catch-per-unit-effort (CPUE) in four Great Plains, USA, streams. The number of sampled reaches (i.e., <1 km) required to estimate stream-segment (i.e., 20–28 km) species richness decreased with increased sampled reach length (i.e., 10, 20, 40, or 60 mean stream widths, MSW), whereas total sampling effort decreased with a greater number of shorter sampled reaches. Collecting all species in a stream segment required all sampled reaches (i.e., 10) of a length equal to 40 or 60 MSW. The number of stream reaches sampled with lengths equal to 40 MSW required to detect a 50% change in CPUE of common species (i.e., total abundance > 1% of total catch) with β = 0.80 ranged from 7 to 630 (mean = 99) and decreased with longer sampled reaches. A greater number of sampled reaches were needed to detect 90% of species richness and 25% changes in CPUE when Jaccard’s similarity of samples of stream fish assemblages and habitat heterogeneity was lower within streams. Our results suggest that homogeneous stream segments require more sampled reaches to characterize fish assemblages and monitor trends in fish abundance.


2020 ◽  
Author(s):  
Petra Guy ◽  
Simon Smart ◽  
Colin Prentice

SummaryThe loss of plant biodiversity in Great Britain is a major concern, with a fifth of species endangered or vulnerable according to the latest IUCN Red List. The Government’s 25 Year Plan for the environment aims to halt this loss and build new habitats, including new woodlands. To ensure that biodiversity loss is halted in existing woodlands and gain is maximised in new ones, we need to better understand which drivers have been most influential in controlling biodiversity. Here we focus on vascular plant species’ richness.Previous attempts to explain plant species richness have mainly focussed on alpha diversity in a consistent, fixed unit area. Here, we additionally undertake a novel analysis of the effects of environmental heterogeneity and abiotic factors on species-area relationships derived from 16 randomly placed quadrats in each of 103 semi-natural, broad-leaved woodlands across Britain. Species-area relationships were examined at two scales (4m2 to 200m2 and 200m2 to 3200m2) to explore the relationship between the drivers of species richness and the exponent z, of the canonical species-area curve, S = cAz. We also explore the use of a new metric ζr, based on zeta diversity to quantify heterogeneity. Zeta diversity quantifies the number of species shared between multiple combinations of plots.Habitat heterogeneity increased species richness, as did the proximity of the woodlands to surrounding natural habitats. Higher levels of soil organic matter and the progression of woodlands to later successional stages, decreased species richness. Richness was also seen to have a unimodal response to soil acidity with a peak around pH 6. At the smaller scale, heterogeneity elements in the woodland such as riparian zones or coppicing led to an increase in the value of the exponent of the species area curve. At the larger scale, species turnover led to an increase in the exponent of the curves while succession led to a decrease. At both scales, soil organic matter content had a negative effect. ζr was found to be a significant and important variable and to affect both species richness and the slope of the species accumulation curves at larger scales.SynthesisHabitat heterogeneity measures included the presence of coppicing, open areas such as rides and riparian zones and the difference between species assemblages in different plots in the woodland. Results suggest that to maximize vascular plant diversity, woodlands should be managed for heterogeneity. In addition, the increase in richness with exposure to surrounding natural habitats suggests that woodlands benefit from being embedded in more benign habitats and further, that land management surrounding woodlands has a clear role to play in supporting biodiversity within woodlands. This is an area were Agri-environment schemes have an important role.


Biologia ◽  
2014 ◽  
Vol 69 (3) ◽  
Author(s):  
Rita Földesi ◽  
Anikó Kovács-Hostyánszki

AbstractA hoverfly (Syrphidae) community was investigated in a cultivated wheat field and the adjacent hedgerow near Debrecen (Hungary). We monitored the change of species richness and abundance of hoverflies along three transects in the hedgerow and in the wheat field in different distances (10 m, 20 m) from the hedgerow. The effect of sampling methods on the number of hoverfly species and individuals was analyzed. Two sampling methods were used to catch hoverflies: netting and pan traps. The whole sampling period was divided into three subperiods, which are early (22nd April–2nd June), middle (11th June–1st August) and late (6th August–11th September). Altogether 1,214 individuals of 22 species were sampled. Fourteen species with 78% of individuals belonged to the aphidophagous group, feeding on aphids as larvae. Altogether 861 individuals of 22 hoverfly species were sampled by netting and 353 individuals of 10 species by pan traps. The total number of hoverfly species was significant lower in the late period than in the early. The total abundance was higher in the middle period compared to the early. The species richness and abundance of aphidophagous species followed a similar pattern as the total species values. The species richness and abundance of hoverflies were significant higher in 10 m and 20 m distance in the wheat field than along the hedgerow. The results suggest that the pan traps were less efficient in the hedgerow than the netting, but in the wheat field they sampled more hoverflies because of visually alluring effect on hoverflies in the absence of flowers.


2014 ◽  
Vol 24 ◽  
pp. 160-168 ◽  
Author(s):  
Steven D. Warren ◽  
Martin Alt ◽  
Keith D. Olson ◽  
Severin D.H. Irl ◽  
Manuel J. Steinbauer ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Panagiotis Theodorou ◽  
Sarah-Christine Herbst ◽  
Belinda Kahnt ◽  
Patricia Landaverde-González ◽  
Lucie M. Baltz ◽  
...  

AbstractBees and flowering plants are two closely interacting groups of organisms. Habitat loss and fragmentation associated with urbanisation are major threats to both partners. Yet how and why bee and floral richness and diversity co-vary within the urban landscape remain unclear. Here, we sampled bees and flowering plants in urban green spaces to investigate how bee and flowering plant species richness, their phylogenetic diversity and pollination-relevant functional trait diversity influence each other in response to urban fragmentation. As expected, bee abundance and richness were positively related to flowering plant richness, with bee body size (but not bee richness and diversity) increasing with nectar-holder depth of flowering plants. Causal modelling indicated that bottom-up effects dictated patterns of bee-flower relationships, with urban fragmentation diminishing flowering plants richness and thereby indirectly reducing bee species richness and abundance. The close relationship between bees and flowering plants highlights the risks of their parallel declines in response to land-use change within the urban landscape.


Sign in / Sign up

Export Citation Format

Share Document