Power Flow Method Used to Vibration Transmission for Two-stage Vibration Isolation System

2011 ◽  
Vol 47 (05) ◽  
pp. 106 ◽  
Author(s):  
Bin XIAO
2019 ◽  
Vol 12 (1) ◽  
pp. 65-71
Author(s):  
Keguo Zhang ◽  
Xiaodong Xu

Background: Machining is an important method for manufacturing parts. It is characterized by high cutting speed with a considerable influence of high-frequency vibration. Various relevant papers and patents have studied vibration transmission and isolation in the machining process. Objective: To investigate vibration transmission and isolation in the machining process, and simplify the cutting process of a machine tool. Methods: Firstly single-layer and double-layer vibration isolation models are established, the substructure matrix analysis method is adopted and the vibration power flow transmission characteristics of double-layer vibration isolation system under complex excitation are analyzed. Secondly, the optimal control strategy based on the minimum power flow inputted into the base is proposed. Then the control effect of the active actuator under different installation modes is analysed and compared. Results: It has been proved that low-frequency coupling is characterized by the rigid mode of the workpiece or the grinding wheel when cutting, whereas high-frequency coupling exhibits the dynamic characteristics of the machine tool bed. A good vibration isolation effect can be achieved for three types of installation modes in a double-layer vibration isolation system, and only the actuators installed between the vibration source and the middle mass exhibit the best control effect. Conclusion: The vibration isolation model has been established and the optimal installation mode of the actuator in the double-layer vibration isolation system has been found. And the paper provides a reference for the study of vibration transmission, control of machine tools and the elimination of grinding chatter.


2016 ◽  
Vol 87 (1) ◽  
pp. 633-646 ◽  
Author(s):  
Xinlong Wang ◽  
Jiaxi Zhou ◽  
Daolin Xu ◽  
Huajiang Ouyang ◽  
Yong Duan

2013 ◽  
Vol 694-697 ◽  
pp. 316-320
Author(s):  
Xiang Jun Kong ◽  
Er Ming Song ◽  
Chang Zheng Chen

Isolation system of the heat water pumps can be simplified as a double sources exciting and double output double-deck vibration isolation system model, expressions of transmitted power flow and vibration speed to the basement are deduced based on the double sources exciting and double output double-deck vibration isolation system electric-force(E-F) analog picture, the curves of power flow and vibration speed transmitted to basement how the upper deck vibration isolation and intermediate mass effect are drawn by using mat lab program. The results show that the adjusting the upper deck vibration isolation stiffness parameters has little effect on the amplitude of vibration power flow, increasing intermediate mass can move first peak to the low frequency, increasing intermediate mass can obviously reduce t transmitted power flow and transmitted vibration speed amplitude to the basement.


2016 ◽  
Vol 17 (5) ◽  
pp. 501 ◽  
Author(s):  
Huang Wei ◽  
Xu Jian ◽  
Zhu Da-Yong ◽  
Hu Ming-Yi ◽  
Lu Jian-Wei ◽  
...  

2016 ◽  
Vol 14 (2) ◽  
pp. 343-361
Author(s):  
Wei Huang ◽  
Jian Xu ◽  
Dayong Zhu ◽  
Cheng Liu ◽  
Jianwei Lu ◽  
...  

Purpose The purpose of this paper is to propose a novel strategy of optimal parameters configuration and placement for sensitive equipment. Design/methodology/approach In this study, clamped thin plate is considered as the foundation form, and a novel composite system is proposed based on the two-stage isolation system. By means of the theory of mechanical four-pole connection, the displacement amplitude transmissibility from the thin plate to precision equipment is derived. For the purpose of performing optimal design of the composite system, a novel multi-objective idea is presented. Multi-objective particle swarm optimization (MOPSO) algorithm is adopted as an optimization technique, which can achieve a global optimal solution (gbest), and selecting the desired solution from an equivalent Pareto set can be avoided. Maximum and variance of the four transmitted peak displacements are considered as the fitness functions simultaneously; the purpose is aimed at reducing the amplitude of the multi-peak isolation system, meanwhile pursuing a uniform vibration as far as possible. The optimization is mainly organized as a combination of parameter configuration and placement design, and the traversal search of discrete plate is performed in each iteration for the purpose of achieving the global optimum. Findings An important transmissibility based on the mechanical four-pole connection is derived, and a composite vibration isolation system is proposed, and a novel optimization problem is also defined here. This study reports a novel optimization strategy combined with artificial intelligence for parameters and placement design of precision equipment, which can promote the traditional view of two-stage vibration isolation. Originality/value Two-stage vibration isolation systems are widely applied to the vibration attenuation of precision equipment, but in these traditional designs, vibration participation of foundation is often ignored. In this paper, participation of foundation of equipment is considered, and a coherent new strategy for equipment isolation and foundation vibration is presented. This study shows a new vision of interdisciplinary including civil engineering, mechanical dynamics and computational science.


Author(s):  
Jingjun Lou ◽  
Shijian Zhu

The application of chaos method in line spectrum reduction is numerically studied. The nonlinear dynamics and the power flow transmissibility of a two-degree-of-freedom vibration isolation system with nonlinear spring are analyzed. The dynamic behavior distribution chart of the system is obtained. Cascades of bifurcation of the system with different excitation amplitude are also gained. The isolation effectiveness is analyzed from the point of view of energy. The numerical results show that the reduction of the line spectrum in chaotic state is much greater than that in non-chaotic state.


Sign in / Sign up

Export Citation Format

Share Document