scholarly journals Applying deep learning models to structural MRI for stage prediction of Alzheimer’s disease

2020 ◽  
Vol 28 (1) ◽  
pp. 196-210 ◽  
Author(s):  
Altuğ YİĞİT ◽  
Zerrin IŞIK
2021 ◽  
Vol 22 (15) ◽  
pp. 7911
Author(s):  
Eugene Lin ◽  
Chieh-Hsin Lin ◽  
Hsien-Yuan Lane

A growing body of evidence currently proposes that deep learning approaches can serve as an essential cornerstone for the diagnosis and prediction of Alzheimer’s disease (AD). In light of the latest advancements in neuroimaging and genomics, numerous deep learning models are being exploited to distinguish AD from normal controls and/or to distinguish AD from mild cognitive impairment in recent research studies. In this review, we focus on the latest developments for AD prediction using deep learning techniques in cooperation with the principles of neuroimaging and genomics. First, we narrate various investigations that make use of deep learning algorithms to establish AD prediction using genomics or neuroimaging data. Particularly, we delineate relevant integrative neuroimaging genomics investigations that leverage deep learning methods to forecast AD on the basis of incorporating both neuroimaging and genomics data. Moreover, we outline the limitations as regards to the recent AD investigations of deep learning with neuroimaging and genomics. Finally, we depict a discussion of challenges and directions for future research. The main novelty of this work is that we summarize the major points of these investigations and scrutinize the similarities and differences among these investigations.


2020 ◽  
Vol 109 ◽  
pp. 103514
Author(s):  
Santos Bringas ◽  
Sergio Salomón ◽  
Rafael Duque ◽  
Carmen Lage ◽  
José Luis Montaña

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7259
Author(s):  
Deevyankar Agarwal ◽  
Gonçalo Marques ◽  
Isabel de la Torre-Díez ◽  
Manuel A. Franco Martin ◽  
Begoña García Zapiraín ◽  
...  

Alzheimer’s disease (AD) is a remarkable challenge for healthcare in the 21st century. Since 2017, deep learning models with transfer learning approaches have been gaining recognition in AD detection, and progression prediction by using neuroimaging biomarkers. This paper presents a systematic review of the current state of early AD detection by using deep learning models with transfer learning and neuroimaging biomarkers. Five databases were used and the results before screening report 215 studies published between 2010 and 2020. After screening, 13 studies met the inclusion criteria. We noted that the maximum accuracy achieved to date for AD classification is 98.20% by using the combination of 3D convolutional networks and local transfer learning, and that for the prognostic prediction of AD is 87.78% by using pre-trained 3D convolutional network-based architectures. The results show that transfer learning helps researchers in developing a more accurate system for the early diagnosis of AD. However, there is a need to consider some points in future research, such as improving the accuracy of the prognostic prediction of AD, exploring additional biomarkers such as tau-PET and amyloid-PET to understand highly discriminative feature representation to separate similar brain patterns, managing the size of the datasets due to the limited availability.


2021 ◽  
Author(s):  
Kiyotaka Nemoto ◽  
Hiromasa Sakaguchi ◽  
Wataru Kasai ◽  
Masatoshi Hotta ◽  
Ryotaro Kamei ◽  
...  

2018 ◽  
Author(s):  
Simeon Spasov ◽  
Luca Passamonti ◽  
Andrea Duggento ◽  
Pietro Liò ◽  
Nicola Toschi

AbstractSome forms of mild cognitive impairment (MCI) can be the clinical precursor of severe dementia like Alzheimer’s disease (AD), while other types of MCI tend to remain stable over-time and do not progress to AD pathology. To choose an effective and personalized treatment for AD, we need to identify which MCI patients are at risk of developing AD and which are not.Here, we present a novel deep learning architecture, based on dual learning and an ad hoc layer for 3D separable convolutions, which aims at identifying those people with MCI who have a high likelihood of developing AD. Our deep learning procedures combine structural magnetic resonance imaging (MRI), demographic, neuropsychological, and APOe4 genotyping data as input measures. The most novel characteristics of our machine learning model compared to previous ones are as follows: 1) multi-tasking, in the sense that our deep learning model jointly learns to simultaneously predict both MCI to AD conversion, and AD vs healthy classification which facilitates the relevant feature extraction for prognostication; 2) the neural network classifier employs relatively few parameters compared to other deep learning architectures (we use ~550,000 network parameters, orders of magnitude lower than other network designs) without compromising network complexity and hence significantly limits data-overfitting; 3) both structural MRI images and warp field characteristics, which quantify the amount of volumetric change compared to the common template, were used as separate input streams to extract as much information as possible from the MRI data. All the analyses were performed on a subset of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, for a total of n=785 participants (192 AD, 409 MCI, and184 healthy controls (HC)).We found that the most predictive combination of inputs included the structural MRI images and the demographic, neuropsychological, and APOe4 data, while the warp field metric added little predictive value. We achieved an area under the ROC curve (AUC) of 0.925 with a 10-fold cross-validated accuracy of 86%, a sensitivity of 87.5% and specificity of 85% in classifying MCI patients who developed AD in three years’ time from those individuals showing stable MCI over the same time-period. To the best of our knowledge, this is the highest performance reported on a test set achieved in the literature using similar data. The same network provided an AUC of 1 and 100% accuracy, sensitivity and specificity when classifying NC from AD. We also demonstrated that our classification framework was robust to different co-registration templates and possibly irrelevant features / image sections.Our approach is flexible and can in principle integrate other imaging modalities, such as PET, and a more diverse group of clinical data. The convolutional framework is potentially applicable to any 3D image dataset and gives the flexibility to design a computer-aided diagnosis system targeting the prediction of any medical condition utilizing multi-modal imaging and tabular clinical data.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Manan Binth Taj Noor ◽  
Nusrat Zerin Zenia ◽  
M Shamim Kaiser ◽  
Shamim Al Mamun ◽  
Mufti Mahmud

Abstract Neuroimaging, in particular magnetic resonance imaging (MRI), has been playing an important role in understanding brain functionalities and its disorders during the last couple of decades. These cutting-edge MRI scans, supported by high-performance computational tools and novel ML techniques, have opened up possibilities to unprecedentedly identify neurological disorders. However, similarities in disease phenotypes make it very difficult to detect such disorders accurately from the acquired neuroimaging data. This article critically examines and compares performances of the existing deep learning (DL)-based methods to detect neurological disorders—focusing on Alzheimer’s disease, Parkinson’s disease and schizophrenia—from MRI data acquired using different modalities including functional and structural MRI. The comparative performance analysis of various DL architectures across different disorders and imaging modalities suggests that the Convolutional Neural Network outperforms other methods in detecting neurological disorders. Towards the end, a number of current research challenges are indicated and some possible future research directions are provided.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 801-801
Author(s):  
Dawn Mechanic-Hamilton ◽  
Sean Lydon ◽  
Alexander Miller ◽  
Kimberly Halberstadter ◽  
Jacqueline Lane ◽  
...  

Abstract This study investigates the psychometric properties of the mobile cognitive app performance platform (mCAPP), designed to detect memory changes associated with preclinical Alzheimer’s Disease (AD). The mCAPP memory task includes learning and matching hidden card pairs and incorporates increasing memory load, pattern separation features, and spatial memory. Participants included 30 older adults with normal cognition. They completed the mCAPP, paper and pencil neuropsychological tests and a subset completed a high-resolution structural MRI. The majority of participants found the difficulty level of the mCAPP game to be “just right”. Accuracy on the mCAPP correlated with performance on memory and executive measures, while speed of performance on the mCAPP correlated with performance on attention and executive function measures. Longer trial duration correlated with measures of the parahippocampal cortex. The relationship of mCAPP variables with molecular biomarkers, at-home and burst testing, and development of additional cognitive measures will also be discussed.


Sign in / Sign up

Export Citation Format

Share Document