scholarly journals Deep Learning with Neuroimaging and Genomics in Alzheimer’s Disease

2021 ◽  
Vol 22 (15) ◽  
pp. 7911
Author(s):  
Eugene Lin ◽  
Chieh-Hsin Lin ◽  
Hsien-Yuan Lane

A growing body of evidence currently proposes that deep learning approaches can serve as an essential cornerstone for the diagnosis and prediction of Alzheimer’s disease (AD). In light of the latest advancements in neuroimaging and genomics, numerous deep learning models are being exploited to distinguish AD from normal controls and/or to distinguish AD from mild cognitive impairment in recent research studies. In this review, we focus on the latest developments for AD prediction using deep learning techniques in cooperation with the principles of neuroimaging and genomics. First, we narrate various investigations that make use of deep learning algorithms to establish AD prediction using genomics or neuroimaging data. Particularly, we delineate relevant integrative neuroimaging genomics investigations that leverage deep learning methods to forecast AD on the basis of incorporating both neuroimaging and genomics data. Moreover, we outline the limitations as regards to the recent AD investigations of deep learning with neuroimaging and genomics. Finally, we depict a discussion of challenges and directions for future research. The main novelty of this work is that we summarize the major points of these investigations and scrutinize the similarities and differences among these investigations.

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7259
Author(s):  
Deevyankar Agarwal ◽  
Gonçalo Marques ◽  
Isabel de la Torre-Díez ◽  
Manuel A. Franco Martin ◽  
Begoña García Zapiraín ◽  
...  

Alzheimer’s disease (AD) is a remarkable challenge for healthcare in the 21st century. Since 2017, deep learning models with transfer learning approaches have been gaining recognition in AD detection, and progression prediction by using neuroimaging biomarkers. This paper presents a systematic review of the current state of early AD detection by using deep learning models with transfer learning and neuroimaging biomarkers. Five databases were used and the results before screening report 215 studies published between 2010 and 2020. After screening, 13 studies met the inclusion criteria. We noted that the maximum accuracy achieved to date for AD classification is 98.20% by using the combination of 3D convolutional networks and local transfer learning, and that for the prognostic prediction of AD is 87.78% by using pre-trained 3D convolutional network-based architectures. The results show that transfer learning helps researchers in developing a more accurate system for the early diagnosis of AD. However, there is a need to consider some points in future research, such as improving the accuracy of the prognostic prediction of AD, exploring additional biomarkers such as tau-PET and amyloid-PET to understand highly discriminative feature representation to separate similar brain patterns, managing the size of the datasets due to the limited availability.


2021 ◽  
Vol 40 ◽  
pp. 03021
Author(s):  
Prajakta Tambe ◽  
Rutuja Saigaonkar ◽  
Nidhi Devadiga ◽  
Pallavi H. Chitte

The determination of Alzheimer’s disease (AD) from neuroimaging data such as MRI has been immensely researched over the last few years. Recent advances in deep learning from a computer perspective have advanced in that research. However, the general limitations of such algorithms depend on the large number of training images, as well as the need to carefully perform the construction of deep networks. In past few days deep learning strategies have found great achievement in the analysis of medical imaging. But very little has been done in the use of deep learning strategies to turn up and differentiate Alzheimer’s disease. We are building a deep convolutional network and demonstrating performance on the ADNI-Alzheimer’s Disease Neuroimaging Initiative Dataset. We present a deep convolutional neural network to recognize Alzheimer and differentiate according the current phase of the disease.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Manan Binth Taj Noor ◽  
Nusrat Zerin Zenia ◽  
M Shamim Kaiser ◽  
Shamim Al Mamun ◽  
Mufti Mahmud

Abstract Neuroimaging, in particular magnetic resonance imaging (MRI), has been playing an important role in understanding brain functionalities and its disorders during the last couple of decades. These cutting-edge MRI scans, supported by high-performance computational tools and novel ML techniques, have opened up possibilities to unprecedentedly identify neurological disorders. However, similarities in disease phenotypes make it very difficult to detect such disorders accurately from the acquired neuroimaging data. This article critically examines and compares performances of the existing deep learning (DL)-based methods to detect neurological disorders—focusing on Alzheimer’s disease, Parkinson’s disease and schizophrenia—from MRI data acquired using different modalities including functional and structural MRI. The comparative performance analysis of various DL architectures across different disorders and imaging modalities suggests that the Convolutional Neural Network outperforms other methods in detecting neurological disorders. Towards the end, a number of current research challenges are indicated and some possible future research directions are provided.


2022 ◽  
Vol 3 (4) ◽  
pp. 322-335
Author(s):  
C. R. Nagarathna ◽  
M. Kusuma

Since the past decade, the deep learning techniques are widely used in research. The objective of various applications is achieved using these techniques. The deep learning technique in the medical field helps to find medicines and diagnosis of diseases. The Alzheimer’s is a physical brain disease, on which recently many research are experimented to develop an efficient model that diagnoses the early stages of Alzheimer’s disease. In this paper, a Hybrid model is proposed, which is a combination of VGG19 with additional layers, and a CNN deep learning model for detecting and classifying the different stages of Alzheimer’s and the performance is compared with the CNN model. The Magnetic Resonance Images are used to analyse both models received from the Kaggle dataset. The result shows that the Hybrid model works efficiently in detecting and classifying the different stages of Alzheimer’s.


2021 ◽  
Vol 40 ◽  
pp. 03030
Author(s):  
Mehdi Surani ◽  
Ramchandra Mangrulkar

Over the past years the exponential growth of social media usage has given the power to every individual to share their opinions freely. This has led to numerous threats allowing users to exploit their freedom of speech, thus spreading hateful comments, using abusive language, carrying out personal attacks, and sometimes even to the extent of cyberbullying. However, determining abusive content is not a difficult task and many social media platforms have solutions available already but at the same time, many are searching for more efficient ways and solutions to overcome this issue. Traditional models explore machine learning models to identify negative content posted on social media. Shaming categories are explored, and content is put in place according to the label. Such categorization is easy to detect as the contextual language used is direct. However, the use of irony to mock or convey contempt is also a part of public shaming and must be considered while categorizing the shaming labels. In this research paper, various shaming types, namely toxic, severe toxic, obscene, threat, insult, identity hate, and sarcasm are predicted using deep learning approaches like CNN and LSTM. These models have been studied along with traditional models to determine which model gives the most accurate results.


2020 ◽  
Vol 109 ◽  
pp. 103514
Author(s):  
Santos Bringas ◽  
Sergio Salomón ◽  
Rafael Duque ◽  
Carmen Lage ◽  
José Luis Montaña

Proceedings ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 28
Author(s):  
Alejandro Puente-Castro ◽  
Cristian Robert Munteanu ◽  
Enrique Fernandez-Blanco

Automatic detection of Alzheimer’s disease is a very active area of research. This is due to its usefulness in starting the protocol to stop the inevitable progression of this neurodegenerative disease. This paper proposes a system for the detection of the disease by means of Deep Learning techniques in magnetic resonance imaging (MRI). As a solution, a model of neuronal networks (ANN) and two sets of reference data for training are proposed. Finally, the goodness of this system is verified within the domain of the application.


Author(s):  
Anamika Mitra ◽  
Supriya Khaitan ◽  
Ali Imam Abidi ◽  
Sudeshna Chakraborty

Sign in / Sign up

Export Citation Format

Share Document