scholarly journals Detection of Alzheimer’s Disease-Related Cognitive Change With the Mobile Cognitive App Performance Platform

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 801-801
Author(s):  
Dawn Mechanic-Hamilton ◽  
Sean Lydon ◽  
Alexander Miller ◽  
Kimberly Halberstadter ◽  
Jacqueline Lane ◽  
...  

Abstract This study investigates the psychometric properties of the mobile cognitive app performance platform (mCAPP), designed to detect memory changes associated with preclinical Alzheimer’s Disease (AD). The mCAPP memory task includes learning and matching hidden card pairs and incorporates increasing memory load, pattern separation features, and spatial memory. Participants included 30 older adults with normal cognition. They completed the mCAPP, paper and pencil neuropsychological tests and a subset completed a high-resolution structural MRI. The majority of participants found the difficulty level of the mCAPP game to be “just right”. Accuracy on the mCAPP correlated with performance on memory and executive measures, while speed of performance on the mCAPP correlated with performance on attention and executive function measures. Longer trial duration correlated with measures of the parahippocampal cortex. The relationship of mCAPP variables with molecular biomarkers, at-home and burst testing, and development of additional cognitive measures will also be discussed.

2004 ◽  
Vol 10 (4) ◽  
pp. 639-643 ◽  
Author(s):  
JOEL H. KRAMER ◽  
NORBERT SCHUFF ◽  
BRUCE R. REED ◽  
DAN MUNGAS ◽  
AN-TAO DU ◽  
...  

This study tested the hypothesis that the hippocampus has a relatively specific role in retaining information over delays. Thirty-seven subjects with probable Alzheimer's disease were evaluated with a verbal memory task and structural MRI. Cortical gray matter but not hippocampal volume predicted immediate free recall. In contrast, hippocampal volume was the best predictor of how well information was retained over a delay, even after controlling for levels of immediate recall. Results suggest that the role of the hippocampus is relatively specific to the consolidation of new memories. (JINS, 2004, 10, 639–643.)


2018 ◽  
Vol 15 (3) ◽  
pp. 229-236 ◽  
Author(s):  
Gennaro Ruggiero ◽  
Alessandro Iavarone ◽  
Tina Iachini

Objective: Deficits in egocentric (subject-to-object) and allocentric (object-to-object) spatial representations, with a mainly allocentric impairment, characterize the first stages of the Alzheimer's disease (AD). Methods: To identify early cognitive signs of AD conversion, some studies focused on amnestic-Mild Cognitive Impairment (aMCI) by reporting alterations in both reference frames, especially the allocentric ones. However, spatial environments in which we move need the cooperation of both reference frames. Such cooperating processes imply that we constantly switch from allocentric to egocentric frames and vice versa. This raises the question of whether alterations of switching abilities might also characterize an early cognitive marker of AD, potentially suitable to detect the conversion from aMCI to dementia. Here, we compared AD and aMCI patients with Normal Controls (NC) on the Ego-Allo- Switching spatial memory task. The task assessed the capacity to use switching (Ego-Allo, Allo-Ego) and non-switching (Ego-Ego, Allo-Allo) verbal judgments about relative distances between memorized stimuli. Results: The novel finding of this study is the neat impairment shown by aMCI and AD in switching from allocentric to egocentric reference frames. Interestingly, in aMCI when the first reference frame was egocentric, the allocentric deficit appeared attenuated. Conclusion: This led us to conclude that allocentric deficits are not always clinically detectable in aMCI since the impairments could be masked when the first reference frame was body-centred. Alongside, AD and aMCI also revealed allocentric deficits in the non-switching condition. These findings suggest that switching alterations would emerge from impairments in hippocampal and posteromedial areas and from concurrent dysregulations in the locus coeruleus-noradrenaline system or pre-frontal cortex.


NeuroImage ◽  
2020 ◽  
Vol 215 ◽  
pp. 116795 ◽  
Author(s):  
F.R. Farina ◽  
D.D. Emek-Savaş ◽  
L. Rueda-Delgado ◽  
R. Boyle ◽  
H. Kiiski ◽  
...  

NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S113
Author(s):  
SF Carter ◽  
GJM Parker ◽  
MA Lambon Ralph ◽  
K Herholz

2018 ◽  
Vol 66 (12) ◽  
pp. 2377-2381 ◽  
Author(s):  
Hanna‐Maria Roitto ◽  
Hannu Kautiainen ◽  
Hannareeta Öhman ◽  
Niina Savikko ◽  
Timo E. Strandberg ◽  
...  

2018 ◽  
Vol 19 (12) ◽  
pp. 3702 ◽  
Author(s):  
Grazia Femminella ◽  
Tony Thayanandan ◽  
Valeria Calsolaro ◽  
Klara Komici ◽  
Giuseppe Rengo ◽  
...  

Alzheimer’s disease is the most common form of dementia and is a significant burden for affected patients, carers, and health systems. Great advances have been made in understanding its pathophysiology, to a point that we are moving from a purely clinical diagnosis to a biological one based on the use of biomarkers. Among those, imaging biomarkers are invaluable in Alzheimer’s, as they provide an in vivo window to the pathological processes occurring in Alzheimer’s brain. While some imaging techniques are still under evaluation in the research setting, some have reached widespread clinical use. In this review, we provide an overview of the most commonly used imaging biomarkers in Alzheimer’s disease, from molecular PET imaging to structural MRI, emphasising the concept that multimodal imaging would likely prove to be the optimal tool in the future of Alzheimer’s research and clinical practice.


Sign in / Sign up

Export Citation Format

Share Document