scholarly journals Fine root biomass and production regarding root diameter in Pinus densiflora and Quercus serrata forests: Soil depth effects and the relationship with net primary production

2003 ◽  
Vol 33 (1) ◽  
pp. 126-136 ◽  
Author(s):  
Zhong Li ◽  
Werner A Kurz ◽  
Michael J Apps ◽  
Sarah J Beukema

In the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS2), root biomass and dynamics are estimated using regression equations based on the literature. A recent analysis showed that some of these equations might overestimate belowground net primary production (NPPB). The objectives of this study were to update the compilation of root biomass and turnover data, to recalculate the regression equations and to evaluate the impact of the new equations on CBM-CFS2 estimates of net primary production (NPP) and net ecosystem production (NEP). We updated all equations based on 635 pairs of aboveground and belowground data compiled from published studies in the cold temperate and boreal forests. The new parameter for the equation to predict total root biomass for softwood species changed only slightly, but the changes for hardwood species were statistically significant. A new equation form, which improved the accuracy and biological interpretation, was used to predict fine root biomass as a proportion of total root biomass. The annual rate of fine root turnover was currently estimated to be 0.641 of fine root biomass. A comparison of NPP estimates from CBM-CFS2 with results from field measurements, empirical calculations and modeling indicated that the new root equations predicted reasonable NPPB values. The changes to the root equations had little effect on NEP estimates.


2009 ◽  
Vol 55 (No. 11) ◽  
pp. 502-510 ◽  
Author(s):  
P. Jaloviar ◽  
L. Bakošová ◽  
S. Kucbel ◽  
J. Vencurik

The fine root biomass represents 3,372 kg/ha in the intermediate stage of the beech virgin forest with different admixture of goat willow, where the vast majority of this biomass is located in the uppermost mineral soil layer 0–10 cm. The variability of the fine root biomass calculated from 35 sample points represents approximately 90% of the mean value and reaches the highest value within the humus layer. The total fine root length investigated in 10 cm thick soil layers decreases with increasing soil depth. A significant linear relationship between the fine root length (calculated per 1 cm thick soil layer and 1 m<sup>2</sup> of stand area) and the soil depth was confirmed, although the correlation is rather weak. The number of root tips decreases with increasing soil depth faster than the root length. As the number of tips per 1 cm of root length remains in the finest diameter class without significant changes, the reason is above all a decreased proportion of the finest root class (diameter up to 0.5 mm) from the total fine root length within the particular soil layer.


2020 ◽  
Vol 25 (1) ◽  
pp. 24-29
Author(s):  
Krishna Prasad Bhattarai ◽  
Tej Narayan Mandal ◽  
Tilak Prasad Gautam

The present study was conducted to understand the effect of altitude on the nutrient concentration, nutrient stock, and uptake in the fine root of the Terai Sal forest (TSF) and Hill Sal forest (HSF) in eastern Nepal. Annual mean fine root biomass in 0-30 cm soil depth was found higher in HSF (6.27 Mg ha-1) than TSF (5.05 Mg ha-1). Conversely, fine root production was higher in TSF (4.8 Mg ha-1 y-1) than HSF (4.12 Mg ha-1 y-1). Nitrogen, phosphorus, and potassium content in fine roots were slightly higher in TSF than HSF. Nutrient concentration in fine roots of smaller size (<2 mm diameter) was nearly 1.2 times greater than that of larger size (2–5 mm diameter) in both forests. In HSF total stock of different nutrients (kg ha-1) in fine root was 55.62 N, 4.99 P, and 20.15 K whereas, these values were 49.49 N, 4.14 P, and 19.27 K only in TSF. However, total nutrient uptake (kg ha-1y-1) by fine root (both size classes) was greater in TSF (48.5 N, 4.3 P, and 18.6 K) than HSF (36.9 N, 3.3 P, and 13.5 K). The variability in fine root nutrient dynamics between these two forests was explained by the differences in fine root biomass and production which were influenced by the combined effect of varied altitude and season. The fine root, as being a greater source of organic matter, the information on its nutrient dynamics is inevitable for the management of soil nutrients in the forest ecosystem.


2021 ◽  
Author(s):  
Rachita Pandey ◽  
Surendra Singh Bargali ◽  
Kiran Bargali

Abstract Fine roots (≤ 2 mm of diameter) contribute diminutive fractions of the overall tree biomass but are highly zestful and functionally remarkable component for assessing forest carbon and nutrient budgets. This study assessed how tree girth influenced fine root biomass (FRB), production (FRP) and turnover rate (FRT) in sub tropical sal forest.Four sites (S1, S2, S3, S4) were established in the bhabhar region of Nainital district, Uttarakhand, India within an elevational range of 405m and 580m. On the basis of girth size, sal trees were categorized in five girth size classes. Fine roots were sampled seasonally to a depth of 60 cm and divided into 3 layers (0-20, 20-40 and 40-60 cm).FRB was significantly affected by tree girth size (p< 0.05) while FRP and FRT showed insignificant effect. FRB was higher in lower girth classes (A-C) as compared to higher girth classes (D-E).Seasonal variation of FRB in all girth sizes showed a keen resemblance as the standing FRB reached pinnacle during rainy season and reached bottom-line in the winter season. Maximum FRB was reported for uppermost organo-mineralic soil depth (0-20 cm) at 1 m distance from tree bole and decreased with increasing soil depth and distance from tree bole while FRT showed a reverse trend. The present study will provide a holistic outlook on variations in FRB, FRP and FRT and the impact of edaphic characteristics and tree girth on fine root dynamics with respect to the studied forest stands.


2019 ◽  
Vol 12 (5) ◽  
pp. 882-893 ◽  
Author(s):  
Yin Li ◽  
Helge Bruelheide ◽  
Thomas Scholten ◽  
Bernhard Schmid ◽  
Zhenkai Sun ◽  
...  

Abstract Aims Tree species richness has been reported to have positive effects on aboveground biomass and productivity, but little is known about its effects on soil organic carbon (SOC) accumulation. Methods To close this gap, we made use of a large biodiversity–ecosystem functioning experiment in subtropical China (BEF-China) and tested whether tree species richness enhanced SOC accumulation. In 2010 and 2015, vertically layered soil samples were taken to a depth of 30 cm from 57 plots ranging in tree species richness from one to eight species. Least squares-based linear models and analysis of variance were used to investigate tree diversity effects. Structural equation modeling was used to explore hypothesized indirect relationships between tree species richness, leaf-litter biomass, leaf-litter carbon content, fine-root biomass and SOC accumulation. Important Findings Overall, SOC content decreased by 5.7 and 1.1 g C kg−1 in the top 0–5 and 5–10 cm soil depth, respectively, but increased by 1.0 and 1.5 g C kg−1 in the deeper 10–20 and 20–30 cm soil depth, respectively. Converting SOC content to SOC stocks using measures of soil bulk density showed that tree species richness did enhance SOC accumulation in the different soil depths. These effects could only to some extent be explained by leaf-litter biomass and not by fine-root biomass. Our findings suggest that carbon storage in new forests in China could be increased by planting more diverse stands, with the potential to contribute to mitigation of climate warming.


2021 ◽  
Author(s):  
Maša Zorana Ostrogović Sever ◽  
Doroteja Dimoski ◽  
Mislav Anić ◽  
Hrvoje Marjanović

&lt;p&gt;Fine root biomass (FRB) is a small but important forest ecosystem pool due to its direct role in ecosystem functioning through belowground carbon and soil nutrient cycling. At the global scale there is evidence that FRB correlates with meteorological parameters, e.g. precipitation and air temperature. Moving from global to regional and local scales other environmental parameters, primarily related to site soil characteristics, become more important.&lt;br&gt;In this research, we investigated which soil parameters are important as drivers of fine root biomass in three different biogeographical regions in Croatia, namely the Continental, the Alpine and the Mediterranean. &amp;#160;We collected data on soil and site characteristics at 242 locations. Soil parameters include bulk density, texture, pH and C, N and P content, while site parameters were latitude, longitude, elevation, precipitation, air temperature and forest type (Coniferous, Broadleaves, and Maquis/Garigues). Fine root biomass was estimated from soil samples collected at 2-8 positions at each location. Soil was sampled down to 30 cm depth in the mineral layer with a split-tube sampler, and analysed for three depths, i.e. 0-10 cm, 10-20 cm, and 20-30 cm depth.&lt;br&gt;Across entire dataset, FRB was affected by precipitation, elevation, forest type, soil depth, and soil C/P and N/P relations. Moving down to each biogeographical region separately, a stronger effect of soil phosphorus was observed for the Mediterranean region.&lt;/p&gt;


2014 ◽  
Vol 103 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Seung Hyun Han ◽  
Tae Kyung Yoon ◽  
Saerom Han ◽  
Soon Jin Yun ◽  
Sun Jeoung Lee ◽  
...  

2002 ◽  
Vol 50 (1) ◽  
pp. 31 ◽  
Author(s):  
D. Eamus ◽  
X. Chen ◽  
G. Kelley ◽  
L. B. Hutley

Below-ground biomass of a Eucalyptus savanna forest was estimated following trenching to depths of 2 m around 16 mature trees in a tropical savanna of north Australia. Correlations among below-ground and various components of above-ground biomass were also investigated. In addition, root morphology was investigated by fractal analyses and a determination of an index of shallow-rootedness was undertaken. Total root biomass was 38.4 t ha–1, including 1 t ha–1 of fine roots. About 77–90&percnt; of total root biomass was found in the upper 0.5 m of soil. While fine-root biomass density was approximately constant (0.1 kg m–3) in the top soil, irrespective of distance from a tree stem, coarse-root biomass showed large variation with distance from the tree stem. Significant positive correlations among total root biomass, total above-ground biomass, diameter at breast height, leaf biomass and leaf area were obtained. It is likely that total root biomass can be reasonably accurately estimated from aboveground biomass and fine-root biomass from tree leaf area. We present equations that allow the prediction of belowground biomass from above-ground measures of tree size. Root morphology of two evergreen and two deciduous species was compared by the use of three parameters. These were the fractal dimension (d), which describes root system complexity; a proportionality factor (&alpha;), which is the ratio of the cross-sectional area before and after branching; and two indices of shallow-rootedness (ISR). Roots were found to be amenable to fractal analyses. The proportionality factor was independent of root diameter (Dr) at any branching level in all tree species examined, indicating that branching patterns were similar across all root sizes. The fractal dimension (d) ranged from 1.15 to 1.36, indicating a relatively simple root structure. Mean d was significantly different between E. tetrodonta (evergreen) and T. ferdinandiana (deciduous); however, no significant differences were found among other pairs of species. Terminalia ferdinandiana had the highest ISR, while Planchonia careya (deciduous) had the lowest. In addition, differences in ISR between P. careya and the other three species were significant, but not significant among E. miniata, E. tetrodonta and T. ferdinandiana. There were clear relationships among above-ground tree stem diameter at breast height, stem base diameter, and horizontal and vertical proximal root diameter. By the use of mean values of and stem diameter, we estimated the total crosssectional area of root and root diameter-class distribution for each species studied.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Serdar Akburak ◽  
Ender Makineci

Abstract Background Thinning is a commonly used treatment in forest management which affects the tree root systems. The effects of thinning on element concentrations and seasonal change of roots were evaluated in adjacent oak (Quercus frainetto Ten.) and hornbeam (Carpinus betulus L.) stands according to the different root diameter classes. Method Two replicated control and thinning plots (50 m × 50 m) were set for each species (hornbeam and oak). Thinning treatments (November 2010) reduced 50% of the basal area in both oak and hornbeam stands. Roots were assessed by seasonal collection over 2 years (from October 2010 to October 2012). The roots were then sorted into diameter classes of 0–2 mm (fine roots), 2–5 mm (small roots) and > 5 mm (coarse roots). C, N, P, K, Ca, Na, Mg, S, Mn, Fe, Al, Zn, Pb, Ni, Cu and Cd were analyzed. Results Except coarse roots, the highest root biomasses were determined in April-2011 in all plots. Fine-root biomass in oak was found significantly higher in control plots. In contrast to the oak, the fine-root biomass in the thinned hornbeam plots was higher than in the controls. The small-root biomass did not significantly differ between the thinned and the control plots in both oak and hornbeam stands. However, the coarse-root biomass showed significant differences between the control (1989 g∙m− 2) and thinned plots (1060 g∙m− 2) in oak, while no difference was detected in hornbeam. The concentrations of C, Al, Pb, Cd, Ni, Zn, Mn, Na, K, Mg and P in the fine roots of oak were significantly higher in the thinned plots. However, the concentration of Pb, Cd and Fe in the fine roots was significantly higher in the thinned plots of hornbeam. Significant differences were observed between the species for all elements in the fine roots except for C, N and P. In particular, elements in the fine roots tended to increase in July in the oak. In the hornbeam, all element concentrations in the fine roots (except C, N, and S) in the thinned plots showed a tendency to increase in April. The concentrations of Pb, Ni, Al, Fe, Cu, Ca, Na, K, Mg and P in the hornbeam control plots increased during the April 2011 period. Conclusion The results indicated that thinning effects on temporal changes and concentrations of elements in the roots could be attributed to species-specific characteristics.


Sign in / Sign up

Export Citation Format

Share Document