scholarly journals Resource estimation for Alpagut - Dodurga coal field and determination of spatial distribution of coal quality parameters

Fuel ◽  
2020 ◽  
Vol 280 ◽  
pp. 118676
Author(s):  
Nafisa Begum ◽  
Abhik Maiti ◽  
Debashish Chakravarty ◽  
Bhabani Sankar Das

2018 ◽  
Vol 28 ◽  
pp. 35-42
Author(s):  
David Black ◽  
Bryan Found ◽  
Doug Rogers

Forensic Document Examiners (FDEs) examine the physical morphology and performance attributes of a line trace when comparing questioned to specimen handwriting samples for the purpose of determining authorship. Along with spatial features, the elements of execution of the handwriting are thought to provide information as to whether or not a questioned sample is the product of a disguise or simulation process. Line features such as tremor, pen-lifts, blunt beginning and terminating strokes, indicators of relative speed, splicing and touch ups, are subjectively assessed and used in comparisons by FDEs and can contribute to the formation of an opinion as to the validity of a questioned sample of handwriting or signatures. In spite of the routine use of features such as these, there is little information available regarding the relative frequency of occurrence of these features in populations of disguised and simulated samples when compared to a large population of a single individual’s signature. This study describes a survey of the occurrence of these features in 46 disguised signatures, 620 simulated signatures (produced by 31 different amateur forgers) and 177 genuine signatures. It was found that the presence of splices and touch-ups were particularly good predictors of the simulation process and that all line quality parameters were potentially useful contributors in the determination of the authenticity of questioned signatures. Purchase Article - $10


Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 77
Author(s):  
Davide Spanu ◽  
Gilberto Binda ◽  
Marcello Marelli ◽  
Laura Rampazzi ◽  
Sandro Recchia ◽  
...  

A laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) based method is proposed for the quantitative determination of the spatial distribution of metal nanoparticles (NPs) supported on planar substrates. The surface is sampled using tailored ablation patterns and the data are used to define three-dimensional functions describing the spatial distribution of NPs. The volume integrals of such interpolated surfaces are calibrated to obtain the mass distribution of Ag NPs by correlation with the total mass of metal as determined by metal extraction and ICP–MS analysis. Once this mass calibration is carried out on a sacrificial sample, quantifications can be performed over multiple samples by a simple micro-destructive LA–ICP–MS analysis without requiring the extraction/dissolution of metal NPs. The proposed approach is here tested using a model sample consisting of a low-density polyethylene (LDPE) disk decorated with silver NPs, achieving high spatial resolution over cm2-sized samples and very high sensitivity. The developed method is accordingly a useful analytical tool for applications requiring both the total mass and the spatial distribution of metal NPs to be determined without damaging the sample surface (e.g., composite functional materials and NPs, decorated catalysts or electrodic materials).


Sign in / Sign up

Export Citation Format

Share Document