Fused inertial measurement unit and real time kinematic-global navigation satellite system data assessment based on robotic total station information for in-field dynamic positioning

2015 ◽  
pp. 275-282 ◽  
Author(s):  
D.S. Paraforos ◽  
H.W. Griepentrog ◽  
J. Geipel ◽  
T. Stehle
Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2594
Author(s):  
Aiden Morrison ◽  
Nadezda Sokolova ◽  
James Curran

This paper investigates the challenges of developing a multi-frequency radio frequency interference (RFI) monitoring and characterization system that is optimized for ease of deployment and operation as well as low per unit cost. To achieve this, we explore the design and development of a multiband global navigation satellite system (GNSS) front-end which is intrinsically capable of synchronizing side channel information from non-RF sensors, such as inertial measurement units and integrated power meters, to allow the simultaneous production of substantial amounts of sampled spectrum while also allowing low-cost, real-time monitoring and logging of detected RFI events. While the inertial measurement unit and barometer are not used in the RFI investigation discussed, the design features that provide for their precise synchronization with the RF sample stream are presented as design elements worth consideration. The designed system, referred to as Four Independent Tuners with Data-packing (FITWD), was utilized in a data collection campaign over multiple European and Scandinavian countries in support of the determination of the relative occurrence rates of L1/E1 and L5/E5a interference events and intensities where it proved itself a successful alternative to larger and more expensive commercial solutions. The dual conclusions reached were that it was possible to develop a compact low-cost, multi-channel radio frequency (RF) front-end that implicitly supported external data source synchronization, and that such monitoring systems or similar capabilities integrated within receivers are likely to be needed in the future due to the increasing occurrence rates of GNSS RFI events.


2019 ◽  
Vol 11 (4) ◽  
pp. 442 ◽  
Author(s):  
Zhen Li ◽  
Junxiang Tan ◽  
Hua Liu

Mobile LiDAR Scanning (MLS) systems and UAV LiDAR Scanning (ULS) systems equipped with precise Global Navigation Satellite System (GNSS)/Inertial Measurement Unit (IMU) positioning units and LiDAR sensors are used at an increasing rate for the acquisition of high density and high accuracy point clouds because of their safety and efficiency. Without careful calibration of the boresight angles of the MLS systems and ULS systems, the accuracy of data acquired would degrade severely. This paper proposes an automatic boresight self-calibration method for the MLS systems and ULS systems using acquired multi-strip point clouds. The boresight angles of MLS systems and ULS systems are expressed in the direct geo-referencing equation and corrected by minimizing the misalignments between points scanned from different directions and different strips. Two datasets scanned by MLS systems and two datasets scanned by ULS systems were used to verify the proposed boresight calibration method. The experimental results show that the root mean square errors (RMSE) of misalignments between point correspondences of the four datasets after boresight calibration are 2.1 cm, 3.4 cm, 5.4 cm, and 6.1 cm, respectively, which are reduced by 59.6%, 75.4%, 78.0%, and 94.8% compared with those before boresight calibration.


2019 ◽  
Vol 12 ◽  
pp. 1004-1005 ◽  
Author(s):  
Semen V. Syrovatskiy ◽  
Yury V. Yasyukevich ◽  
Ilya K. Edemskiy ◽  
Artem M. Vesnin ◽  
Sergey V. Voeykov ◽  
...  

2020 ◽  
Vol 27 (3) ◽  
pp. 117-141
Author(s):  
Giuliana Rossi ◽  
Riccardo Caputo ◽  
David Zuliani ◽  
Paolo Fabris ◽  
Massimiliano Maggini ◽  
...  

2020 ◽  
Vol 164 ◽  
pp. 03001 ◽  
Author(s):  
Boštjan Kovačič ◽  
Luka Muršec ◽  
Sebastian Toplak ◽  
Samo Lubej

Structural monitoring of objects is primarily executed to assess external and internal effects on the object, in order to ensure the safety of people, animals, and material assets. Such monitoring can be executed through various methods, depending on the object, conditions for execution, and purpose of the monitoring. In this case, the focus is on the execution of the monitoring of Maribor footbridge, where the dynamic effects of the object are monitored. For this purpose, geophone, accelerometer, and geodetic methods—using Global Navigation Satellite System (GNSS) and Robotic Total Station (RTS) equipment—are used, of which one is controlled by the additional programme GeoComZG. The emphasis of our experiment is on the application of non-contact geodetic methods, with which the measurements of dynamic response are typically performed, as they enable measurements up to 30 and 100 Hz with RTS and GNSS, respectively. In this article, the application of various procedures of non-contact data capture on the footbridge are detailed and a comparison and analysis of the obtained values for monitoring the dynamic response of the structure are presented.


Sign in / Sign up

Export Citation Format

Share Document