Safety and persistence of orally administered human Lactobacillus sp. strains in healthy adults

2011 ◽  
Vol 2 (1) ◽  
pp. 79-90 ◽  
Author(s):  
P. Hütt ◽  
P. Kõll ◽  
J. Stsepetova ◽  
B. Alvarez ◽  
R. Mändar ◽  
...  

The aim of the study was to evaluate the safety and persistence of selected Lactobacillus strains in the gastrointestinal tract (GIT) of healthy adult volunteers after oral consumption of high doses of lactobacilli to identify potential candidates for probiotic and biotechnological applications. In the first phase of the study, nine individuals consumed capsules containing Lactobacillus gasseri 177 and E16B7, Lactobacillus acidophilus 821-3, Lactobacillus paracasei 317 and Lactobacillus fermentum 338-1-1 (each daily dose 1×1010 cfu) for 5 consecutive days. Data on gut health, blood parameters, and liver and kidney function were collected. The persistence of Lactobacillus strains was assessed by culturing combined with arbitrarily primed polymerase chain reaction (AP-PCR) and PCR-denaturing gradient gel electrophoresis (PCR-DGGE) on days 0, 5, 8, 10 and 20 from faecal samples. All strains survived gastrointestinal passage and were detected on the 5th day. L. acidophilus 821-3 was detected in four volunteers on the 8th day (4.3 to 7.0 log10 cfu/g) and in two on the 10th day (8.3 and 3.9 log10 cfu/g, respectively). In the second phase of the study, five additional volunteers consumed L. acidophilus 821-3 (daily 1×1010 cfu) for 5 consecutive days. The strain was subsequently detected in faeces of all individuals using real-time PCR on the 10th day (range 4.6-6.7; median 6.0 log10 cell/g) in both phases of the study for at least 5 days after discontinuation of consumption. The administration of high doses of different Lactobacillus strains did not result in any severe adverse effects in GIT and/or abnormal values of blood indices. Thus, the strain L. acidophilus 821-3 is a promising candidate for probiotic and biotechnological applications. Further studies will be performed to confirm the strain persistence and safety in a larger number of individuals.

2011 ◽  
Vol 108 (3) ◽  
pp. 482-491 ◽  
Author(s):  
Makoto Mitsumori ◽  
Takumi Shinkai ◽  
Akio Takenaka ◽  
Osamu Enishi ◽  
Koji Higuchi ◽  
...  

The effects of the anti-methanogenic compound, bromochloromethane (BCM), on rumen microbial fermentation and ecology were examinedin vivo. Japanese goats were fed a diet of 50 % Timothy grass and 50 % concentrate and then sequentially adapted to low, mid and high doses of BCM. The goats were placed into the respiration chambers for analysis of rumen microbial function and methane and H2production. The levels of methane production were reduced by 5, 71 and 91 %, and H2production was estimated at 545, 2941 and 3496 mmol/head per d, in response to low, mid and high doses of BCM, respectively, with no effect on maintenance feed intake and digestibility. Real-time PCR quantification of microbial groups showed a significant decrease relative to controls in abundance of methanogens and rumen fungi, whereas there were increases inPrevotellaspp. andFibrobacter succinogenes, a decrease inRuminococcus albusandR. flavefacienswas unchanged. The numbers of protozoa were also unaffected. Denaturing gradient gel electrophoresis and quantitative PCR analysis revealed that severalPrevotellaspp. were the bacteria that increased most in response to BCM treatment. It is concluded that the methane-inhibited rumen adapts to high hydrogen levels by shifting fermentation to propionate viaPrevotellaspp., but the majority of metabolic hydrogen is expelled as H2gas.


2013 ◽  
Vol 110 (7) ◽  
pp. 1292-1303 ◽  
Author(s):  
Corrie M. Whisner ◽  
Berdine R. Martin ◽  
Margriet H. C. Schoterman ◽  
Cindy H. Nakatsu ◽  
Linda D. McCabe ◽  
...  

Adolescence is a time for rapid growth that represents an opportunity to influence peak bone mass. Prebiotic agents, such as galacto-oligosaccharides (GOS), increase Ca absorption in animal models and postmenopausal women. The objectives of the present study were to investigate the dose–response relationship of GOS supplementation on Ca absorption during growth and to assess changes in colonic microbiota to better understand the mechanism by which GOS is acting. A total of thirty-one healthy adolescent girls aged 10–13 years consumed smoothie drinks twice daily with 0, 2·5 or 5 g GOS for three 3-week periods in a random order. Fractional Ca absorption was determined from urinary Ca excretion over 48 h at the end of each 3-week period using a dual stable isotope method. Faecal microbiota and bifidobacteria were assessed by PCR–denaturing gradient gel electrophoresis and quantitative PCR. Fractional Ca absorption after the 48 h treatment with control, 5 and 10 g GOS/d was 0·393 (sd 0·092), 0·444 (sd 0·086) and 0·419 (sd 0·099), respectively. Significant improvements in Ca absorption were seen with both low and high doses of GOS compared with the control (P< 0·02), but it was not a dose–response relationship. The increase in absorption was greatest in the urine collected after 24 h, which is consistent with lower gut absorption. Faecal bifidobacteria increased (control 10·89 (sd 13·86), 5 g GOS 22·80 (sd 15·74) and 10 g GOS 11·54 (sd 14·20)) with the GOS treatment (P< 0·03). The results suggest that daily consumption of 5 g GOS increases Ca absorption, which may be mediated by the gut microbiota, specifically bifidobacteria.


2010 ◽  
Vol 1 (3) ◽  
pp. 271-281 ◽  
Author(s):  
A. Petersen ◽  
A. Bergström ◽  
J. Andersen ◽  
M. Hansen ◽  
S. Lahtinen ◽  
...  

Certain indigestible carbohydrates, known as prebiotics, are claimed to be beneficial for gut health through a selective stimulation of certain gut microbes including bifidobacteria. However, stimulation of such microbes does not necessarily imply a preventive effect against pathogen infection. We recently demonstrated a reduced resistance to Salmonella infection in mice fed diets containing fructo-oligosaccharides (FOS) or xylo-oligosaccharides (XOS). In the present study, faecal and caecal samples from the same mice were analysed in order to study microbial changes potentially explaining the observed effects on the pathogenesis of Salmonella. Denaturing gradient gel electrophoresis revealed that the microbiota in faecal samples from mice fed FOS or XOS were different from faecal samples collected before the feeding trial as well as from faecal profiles generated from control animals. This difference was not seen for caecal profiles. Further analysis of faecal samples by real-time PCR demonstrated a significant increase in the Bacteroidetes phylum, the Bacteroides fragilis group and in Bifidobacterium spp. in mice fed FOS or XOS. The observed bifidogenic effect was more pronounced for XOS than for FOS. The Firmicutes phylum and the Clostridium coccoides group were reduced by both FOS and XOS. Surprisingly, no significant differences were detected between faecal samples collected before and after pathogen challenge in any of the groups. Furthermore, no effect of diets on caecal concentrations of short-chain fatty acids was recorded. In conclusion, diets supplemented with FOS or XOS induced a number of microbial changes in the faecal microbiota of mice. The observed effects of XOS were qualitatively similar to those of FOS, but the most prominent bifidogenic effect was seen for XOS. An increased level of bifidobacteria is thus not in itself preventive against Salmonella infection, since the same XOS or FOS-fed mice were previously reported to be more severely affected by Salmonella than control animals.


2020 ◽  
Vol 51 (2) ◽  
pp. 125-146
Author(s):  
Nasiruddin Nasiruddin ◽  
Yu Zhangxin ◽  
Ting Zhao Chen Guangying ◽  
Minghui Ji

We grew cucumber in pots in greenhouse for 9-successive cropping cycles and analyzed the rhizosphere Pseudomonas spp. community structure and abundance by PCR-denaturing gradient gel electrophoresis and quantitative PCR. Results showed that continuous monocropping changed the cucumber rhizosphere Pseudomonas spp. community. The number of DGGE bands, Shannon-Wiener index and Evenness index decreased during the 3rd cropping and thereafter, increased up to the 7th cropping, however, however, afterwards they decreased again. The abundance of Pseudomonas spp. increased up to the 5th successive cropping and then decreased gradually. These findings indicated that the structure and abundance of Pseudomonas spp. community changed with long-term cucumber monocropping, which might be linked to soil sickness caused by its continuous monocropping.


2011 ◽  
Vol 3 (1) ◽  
Author(s):  
Lies Indah Sutiknowati

There is an information how to identify hydrocarbon degrading bacteria for bioremediation of marine oil spill. We have Bioremediation treatment for degradation of oil spill on Pari island and need two kind of experiment there are tanks experiment (sampling 0 to 90 days) and semi enclosed system (sampling 0 to 150 days). Biostimulation with nutrients (N and P) was done to analyze biodegradation of hydrocarbon compounds. Experiment design using fertilizer Super IB and Linstar will stimulate bacteria can degrade oil, n-alkane, and alkane as poly aromatic hydrocarbon. The bacteria communities were monitored and analyzed by Denaturing Gradient Gel Electrophoresis (DGGE) and Clone Library; oil chemistry was analyzed by Gas Chromatography Mass Spectrometry (GCMS). DNA (deoxyribonucleic acid) was extracted from colonies of bacteria and sequence determination of the 16S rDNA was amplified by primers U515f and U1492r. Strains had been sequence and had similarity about 90-99% to their closest taxa by homology Blast search and few of them suspected as new species. The results showed that fertilizers gave a significant effect on alkane, PAH and oil degradation in tanks experiment but not in the field test. Dominant of the specific bacteria on this experiment were Alcanivorax, Marinobacter and Prosthecochloris. Keywords: Bioremediation, Biostimulation, DGGE, PAH, Pari Island


1998 ◽  
Vol 37 (4-5) ◽  
pp. 71-78 ◽  
Author(s):  
Thomas P. Curtis ◽  
Noel G. Craine

The explicit engineering of bacterial populations requires that we know which organisms perform which tasks. The comparison of the bacterial diversity of activated sludge plants may give important information about the functions of different bacteria. This difficult task may be made easier by the use of technologies based on 16S rRNA based techniques. In this study we have used denaturing gradient gel electrophoresis (DGGE) to determine the optimal sampling regime for comparative studies and used cluster analysis to show how plants may be quantitatively compared. We sought evidence of spatial, diurnal and intrasample variation in a number of sites. No evidence for variation was found in the plants studied and we concluded that a single sample of an activated sludge plant was sufficient for a plant to plant comparison. The cluster analysis was able to distinguish between plants, though further work is required to find the most appropriate basis for such comparisons. We found organisms from raw sewage in the mixed liquor samples, these organisms may have no functional significance in the treatment process and thus complicate plant to plant comparisons as will the probable presence of heteroduplex rDNA products. Nevertheless we believe that these drawbacks do not outweigh the advantages of being able to take and compare relatively large numbers of samples.


Sign in / Sign up

Export Citation Format

Share Document