The Seasonal Changes in Endogenous Levels of Indole-3-Acetic Acid, Gibberellic Acid, Zeatin and Abscisic Acid in Stems of Some Apple Varieties (Malus sylvestris Miller)

2008 ◽  
Vol 7 (3) ◽  
pp. 319-322 ◽  
Author(s):  
Aysel Sivaci ◽  
Ibrahim Yalcin
2016 ◽  
Vol 69 (1) ◽  
Author(s):  
Marian Saniewski ◽  
Justyna Góraj-Koniarska ◽  
Elżbieta Węgrzynowicz-Lesiak ◽  
Eleonora Gabryszewska

It is known that chilling of <em>Muscari</em> bulbs is necessary for the growth of the inflorescence stalk and flowering, but not for the growth of leaves. Gibberellic acid (GA) accelerated stem growth and flowering in chilled <em>Muscari</em> bulbs. In the present experiment it was shown that in unchilled derooted <em>Muscari</em> bulbs the growth of leaves, but not the growth of the inflorescence stalk, was observed when bulbs were stored in water, GA at a concentration of 50 and 100 mg/L, benzyladenine (BA) at a concentration of 25 and 50 mg/L, or a mixture of GA+BA (50+25 mg/L), but abscisic acid (ABA) at a concentration of 10 mg/L greatly inhibited the growth of leaves. In chilled derooted <em>Muscari</em> bulbs the growth of leaves and inflorescence stalk was observed when bulbs were stored in water or GA, but BA and GA+BA treatments totally inhibited the growth of the inflorescence stalk without an effect on the growth of leaves. These results clearly showed that the growth of leaves and inflorescence stalk in <em>Muscari</em> bulbs are controlled by plant growth regulators in different ways. ABA totally inhibited the growth of leaves and inflorescence stalk in chilled derooted <em>Muscari</em> bulbs. It was shown that after the excision of the inflorescence bud in cultivated chilled <em>Muscari</em> bulbs, the inflorescence stalk died, but application of indole-3-acetic acid (IAA) 0.5% in the place of the removed inflorescence bud induced the growth of the inflorescence stalk. IAA applied under the inflorescence bud inhibited the development of flowers (flower-bud blasting) and induced the growth of the inflorescence stalk below the treatment site. These results are discussed with reference to hormonal regulation of stem (stalk) growth in tulip, narcissus, hyacinth, and <em>Hippeastrum</em>.


HortScience ◽  
1990 ◽  
Vol 25 (2) ◽  
pp. 228-229
Author(s):  
Kil Sun Yoo ◽  
Leonard M. Pike ◽  
B. Greg Cobb

Inner scales excised from dormant bulbs of the short-day `Texas Grano 1015Y' onion (Allium cepa L.) were cultured in vitro and leaf growth was examined. Light promoted leaf growth, but no differences in leaf growth were observed for media pH between 4 and 7. Leaf growth rate in darkness was highest at 24C, reduced at 15C, and greatly reduced at SC. Kinetin promoted leaf growth at 1, 10, and 100 μm. IAA was effective at 1 and 10 μM, but not at 0.1 and 100 μm. GA3 promoted growth at 0.1 μM. No inhibitory effects of ABA on leaf growth could be detected. Chemical names used: 1-H-indole-3-acetic acid (IAA), abscisic acid (ABA), gibberellic acid (GA3), 6-furfurylaminopurine (Kinetin).


Holzforschung ◽  
2001 ◽  
Vol 55 (2) ◽  
pp. 128-134 ◽  
Author(s):  
R. Funada ◽  
T. Kubo ◽  
M. Tabuchi ◽  
T. Sugiyama ◽  
M. Fushitani

Summary Seasonal changes in the total amount (measured as ng cm−2) of endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA) in the cambial region of Pinus densiflora Sieb. et Zucc. trees with crowns of different sizes were determined at different stem heights. The total amount of IAA varied seasonally in all trees and at all stem positions, being maximal in early summer (May or July). In a tree with a large crown, the total amount of IAA remained high after peaking and declined in autumn, whereas in a tree with small crown it decreased rapidly after peaking, in particular in the lower stem. The transition from earlywood to latewood occurred concurrently with the decrease in the total amount of IAA after it had peaked, suggesting the involvement of IAA in the control of latewood formation. Cessation of the production of tracheids also paralleled the decline in the total amount of IAA early in the growing season in the lower stem of the tree with a small crown, but not in the tree with a large crown. Thus, other factors in addition to declining IAA seem to be involved in halting the production of the tracheids. The total amount of ABA was lower than that of IAA in all trees and at all stem heights, and changes were not correlated with specific changes during the annual cycle of cambial activity and dormancy.


1970 ◽  
Vol 33 (3) ◽  
pp. 493-502 ◽  
Author(s):  
Sridhar Gutam ◽  
Virendra Nath ◽  
GC Srivastava

A pot experiment was conducted in the rabi (post rainy) seasons of 2001 and 2002 to study the genotypic differences in grain growth rate and endogenous hormonal content in the developing grains of hexaploid and tetraploid wheat. The endogenous hormonal contents of grains in both the ploidy levels had changed in sequence. At 5 days after anthesis (DAA), gibberellic acid (GA3); at 15 DAA (rapid growth phase), indole-acetic acid (IAA); at 25 DAA (dough stage), abscisic acid (ABA) were maximum. At 35 DAA, all the endogenous hormonal level decreased and among the hormones, ABA was highest followed by IAA and GA3. Hexaploids recorded higher concentrations of endogenous hormones (13.38% IAA, 17.89% GA3, and 14.7% ABA) on fresh weight basis and resulted in higher seed weight (56.99 mg/grain) and grain growth rate (0.009 g/g/day) compared to tetraploids (49.08 mg/grain; 0.008 g/g/day) on dry weight basis by better mobilization of photosynthates during grain filling. Key Words: Grain growth rate, hormones, indole-acetic acid, gibberellic acid, abscisic acid. doi:10.3329/bjar.v33i3.1608 Bangladesh J. Agril. Res. 33(3) : 493-502, September 2008


1992 ◽  
Vol 100 (2) ◽  
pp. 692-698 ◽  
Author(s):  
Aga Schulze ◽  
Philip J. Jensen ◽  
Mark Desrosiers ◽  
J. George Buta ◽  
Robert S. Bandurski

Sign in / Sign up

Export Citation Format

Share Document