Elevated CO2 Coupled with Mineral N Supply Enhanced Lateral Branch Development in Common Pea

2006 ◽  
Vol 9 (15) ◽  
pp. 2831-2834
Author(s):  
O.E. Ade-ademil ◽  
C.E.J. Botha .
Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 939
Author(s):  
Yoko Watanabe ◽  
Kiyomi Hinata ◽  
Laiye Qu ◽  
Satoshi Kitaoka ◽  
Makoto Watanabe ◽  
...  

To elucidate changes in the defensive traits of tree seedlings under global environmental changes, we evaluated foliar defensive traits of the seedlings of successional trees, such as beech, oak, and magnolia grown in a natural-light phytotron. Potted seedlings were grown under the combination of two CO2 concentrations (360 vs. 720 ppm) and two nitrogen (N) treatments (4 vs. 15 kg N ha−1 yr−1) for two growing seasons using quantitative chemical analyses and anatomical method. We hypothesized that the effects of CO2 and N depend on the successional type, with late successional species providing greater defense of their leaves against herbivores, as this species exhibits determinate growth. Beech, a late successional species, responded the most to both elevated CO2 concentration (eCO2) and high N treatment. eCO2 and low N supply enhanced the defensive traits, such as the high leaf mass per area (LMA), high carbon to N ratio (C/N ratio), and increase in the concentrations of total phenolic and condensed tannin in agreement with the carbon–nutrient balance (CNB) hypothesis. High N supply decreased the C/N ratio due to the high N uptake in beech leaves. Oak, a mid–late successional species, exhibited different responses from beech: eCO2 enhanced the LMA, C/N ratio, and concentration of total phenolics of oak leaves, but only condensed tannin increased under high N supply. Magnolia did not respond to all treatments. No interactive effects were observed between CO2 and N supply in all species, except for the concentration of total phenolics in oak. Although the amounts of phenolic compounds in beech and oak varied under eCO2 and high N treatments, the distribution of these compounds did not change. Our results indicate that the changes in the defensive traits of forest tree species under eCO2 with N loading are related to the successional type.


2021 ◽  
Author(s):  
Junling Dou ◽  
Huihui Yang ◽  
Dongling Sun ◽  
Sen Yang ◽  
Shouru Sun ◽  
...  

Abstract Lateral branching is one of the most important traits, which directly determines plant 27 architecture and crop productivity. Commercial watermelon has the characteristics of multiple 28 lateral branches, and it is time-consuming and labor costing to manually remove the lateral 29 branches in traditional watermelon cultivation. In our present study, a lateral branchless trait was 30 identified in watermelon material W CZ, and genetic analysis revealed that it was controlled by a 31 single recessive gene, which named as Clbl . A bulked segregant sequencing (BSA seq) and 32 linkage analysis was conducted to primarily mapping of Clbl on watermelon chromosome 4 33 Next-generation sequencing aided marker discovery and a large mapping population consisting of 34 1406 F 2 plants was used to further mapped the Clbl locus into a 9011 bp candidate region which 35 harbored only one candidate gene Cla018392 encoding a TERMINAL FLOWER 1 gene. Sequence 36 comparison of Cla018392 between two parental lines revealed that there was a SNP detected from 37 C to A in the coding region in the branchless inbred line WCZ , which resulted in a mutation of 38 Alanine (GCA) to Glutamate (GAA) at the fourth exon A dCAPS marker was developed from the 39 SNP locus, which was co-segregated with the branchless phenotype in both BC 1 and F 2 population, 40 and it was also further validated in 152 natural watermelon accessions. qRT PCR and in situ 41 hybridization showed that the expression levels of Cla0 18392 was significantly reduced in the 42 axillary bud and apical bud in the branchless line WCZ Ectopic expression of ClTFL1 in 43 Arabidopsis showed an increased number of lateral branches. The results of this study will be 44 useful for better understanding the molecular mechanism of lateral branch development in 45 watermelon and for the development of marker-assisted selection (MAS) for new branchless 46 watermelon cultivars.


1996 ◽  
Vol 23 (1) ◽  
pp. 45 ◽  
Author(s):  
LH Ziska ◽  
W Weerakoon ◽  
OS Namuco ◽  
R Pamplona

Rice (Oryza sativa L. cv. IR72) was grown in the tropics at ambient (345 μL L-1) or twice ambient (elevated, 700 μL L-1) CO2, concentration at three levels of supplemental nitrogen (N) (no additional N (N0), 90 kg ha-1 (N1) and 200 kg ha-1 (N2)) in open-top chambers under irrigated field conditions from seeding until flowering. The primary objective of the study was to determine if N supply alters the sensitivity of growth and photosynthesis of field-grown rice to enriched CO2. A second objective was to determine the influence of elevated CO2 on N uptake and tissue concentrations. Although photosynthesis was initially stimulated at the leaf and canopy level with elevated CO2 regardless of supplemental N supply, with time the photosynthetic response became highly dependent on the level of supplemental N, increasing proportionally as N availability increased. Similarly, a synergistic effect was noted between CO2 and N with respect to above-ground biomass with no effect of elevated CO2 observed for the No treatment. Most of the increase in above-ground biomass with increasing CO2 and N was associated with increased tiller and, to a lesser extent, root production. The concentration of above-ground N decreased at elevated CO2 regardless of N treatment; however, total above-ground N did not change for the N1 and N2 treatments because of the greater amount of biomass associated with elevated CO2. For rice, the photosynthetic and growth response to elevated CO2 may be highly dependent on the supply of N. If additional CO2 is given and N is not available, lack of sinks for excess carbon (e.g. tillers) may limit the photosynthetic and growth response.


HortScience ◽  
1992 ◽  
Vol 27 (1) ◽  
pp. 30-32 ◽  
Author(s):  
David W. Burger ◽  
Pavel Svihra ◽  
Richard Harris

Treeshelters were used for the nursery production of Cedrus deodara Loud. (deodar cedar), Quercus ilex L. (holly oak), and Magnolia grandiflora L. (southern magnolia) trees growing in 19-liter containers. Air temperature, relative humidity, and CO, concentration were higher inside the treeshelters than outside. Trees grown inside treeshelters were 74% to 174% taller than trees grown without shelters. Trunk caliper of Magnolia and Quercus was not affected, however, for Cedrus trees caliper was larger for trees grown without a shelter. Upon removal of the shelter, Cedrus trees were incapable of supporting their own weight. Lateral branch development was inhibited and leaf senescence was greater with Magnolia trees grown in a shelter. Quercus trees grown in shelters were ready to be transplanted into the landscape. Water use was similar for trees grown with or without shelters. Trees grown in shelters had lower root fresh weights.


HortScience ◽  
2007 ◽  
Vol 42 (2) ◽  
pp. 251-256 ◽  
Author(s):  
Don C. Elfving ◽  
Dwayne B. Visser

Improving lateral branch development in young sweet cherry trees without reliance on pruning is a desirable component of tree training programs, especially for high-density systems. Applications of two proprietary formulations of 6-benzyladenine and gibberellins A4 and A7 (Promalin, Valent Biosciences, Walnut Creek, Calif.; and Perlan, Fine Americas, Walnut Creek, Calif.) to individual buds or intact bark of unpruned sweet cherry central leader shoots at green-tip had little effect on lateral shoot growth from buds or on distribution of new shoot growth along the treated leader shoots. Scoring, nicking, or notching cuts alone also had inconsistent effects on shoot development and distribution. In some trials, bud removal (or disbudding, removing every fourth bud on 1-year-old shoots) produced limited improvement of lateral shoot development and vertical distribution. Combining nicking, notching, scoring, or bark scraping with the application of cytokinin–gibberellic acid solution to the cut area greatly improved both number of shoots developed and the numbers originating from the lower portions of treated leader shoots. Removing the physical barrier to bioregulator product contact with active tissues was a primary factor in improving treatment efficacy.


Plant Science ◽  
2021 ◽  
Vol 302 ◽  
pp. 110681
Author(s):  
Junjun Shen ◽  
Danfeng Ge ◽  
Xiaofei Song ◽  
Jiajing Xiao ◽  
Xiaofeng Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document