scholarly journals Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves

2018 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Omid Nikan ◽  
◽  
Seyedeh Mahboubeh Molavi-Arabshai ◽  
Hossein Jafari ◽  
◽  
...  
Wave Motion ◽  
2016 ◽  
Vol 65 ◽  
pp. 156-174 ◽  
Author(s):  
R.M. Vargas-Magaña ◽  
P. Panayotaros

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Changping Li ◽  
Longchen Duan ◽  
Songcheng Tan ◽  
Victor Chikhotkin ◽  
Xiaohui Wang

Electropulse rock breaking has wide application prospects in hard rock drilling and ore breaking. At present, there are no suitable physical mathematical models that describe electropulse boring (EPB) processes under confining pressures. In this paper, a high-voltage electropulse breakdown damage model is established for granite, which includes three submodels. It considers electric field distortions inside the rock, and an electric field distribution coefficient is introduced in the electro-breakdown model. A shock-wave model is also constructed and solved. To simulate the heterogeneity of rocks, EPB rock breaking in deep environments is simulated using the two-dimensional Particle Flow Code (PFC2D) program. The solved shock wave is loaded into the model, and confining pressure is applied by the particle servo method. An artificial viscous boundary is used in the numerical simulation model. Using this approach, a complete numerical simulation of electropulse granite breaking is achieved. Breakdown strength and the influences of physical and mechanical parameters on it are also obtained. Time-varying waveforms of electrical parameters are obtained, and the effect of confining pressure on EPB is also described.


1980 ◽  
Vol 86 ◽  
pp. 299-302
Author(s):  
T. Takakura

By the use of semi-analytical method, modeling of three kinds of type III solar radio bursts have been made. Many basic problems about the type III bursts and associated solar electrons have been solved showing some striking or unexpected results. If the fundamental radio emissions should be really observed as the normal type III bursts, the emission mechanism would not be the currently accepted one, i.e. the scattering of plasma waves by ions.


MRS Advances ◽  
2019 ◽  
Vol 4 (11-12) ◽  
pp. 667-674 ◽  
Author(s):  
Rachel N. Evans ◽  
Seth R. Calhoun ◽  
Jonathan R. Brescia ◽  
Justin W. Cleary ◽  
Evan M. Smith ◽  
...  

ABSTRACTMetal–insulator–metal (MIM) resonant absorbers comprise a conducting ground plane, a dielectric of thickness t, and thin separated metal top-surface structures of dimension l. The fundamental resonance wavelength is predicted by an analytic standing-wave model based on t, l, and the dielectric refractive index spectrum. For the dielectrics SiO2, AlN, and TiO2, values for l of a few microns give fundamental resonances in the 8-12 μm long-wave infrared (LWIR) wavelength region. Agreement with theory is better for t/l exceeding 0.1. Harmonics at shorter wavelengths were already known, but we show that there are additional resonances in the far-infrared 20 - 50 μm wavelength range in MIM structures designed to have LWIR fundamental resonances. These new resonances are consistent with the model if far-IR dispersion features in the index spectrum are considered. LWIR fundamental absorptions are experimentally shown to be optimized for a ratio t/l of 0.1 to 0.3 for SiO2- and AlN-based MIM absorbers, respectively, with TiO2-based MIM optimized at an intermediate ratio.


Sign in / Sign up

Export Citation Format

Share Document