scholarly journals Parametric design analysis of elliptical shroud profile

AIMS Energy ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1147-1169
Author(s):  
Salih Nawaf Akour ◽  
◽  
Mahmoud Azmi Abo Mhaisen

<abstract> <p>Parametric design analysis for Eccentric Rotated Ellipsoid (ERE) shroud profile is conducted whereas the design model is validated experimentally. A relation between shroud inlet, length and exit diameter is established, different ratios related to the wind turbine diameter are introduced, and solution for different ERE family curves that passes on the inlet, throat, and exit points is studied. The performance of the ERE shroud is studied under different wind velocities ranging from 5–10 m/s.</p> <p>The method used in creating the shroud profile is by solving the ERE curve equations to generate large family of solutions. The system is modeled as axisymmetric system utilizing commercial software package. The effect of the parameters; shroud length, exit diameter, inlet diameter, turbine position with respect to the shroud throat, and wind velocity are studied. An optimum case for each shroud length, exit diameter and location of the shroud with respect to the wind turbine throat axis are achieved.</p> <p>The simulation results show an increase in the average wind velocity by 1.63 times of the inlet velocity. This leads to a great improvement in the wind turbine output power by 4.3 times of bare turbine. One of the achieved optimum solutions for the shroud curves has been prototyped for experimental validation. The prototype has been manufactured using 3D printing technology which provides high accuracy in building the exact shape of shroud design curve. The results show very good agreement with the experimental results.</p></abstract>

Author(s):  
Sandip Kale ◽  
S. N. Sapali

Micro wind turbines installed in various applications, experience average wind speed for most of the time during operations. Power produced by the wind turbine is proportional to the cubic power of the wind velocity and a small increase in wind velocity results increases power output significantly. The approach wind velocity can be increased by covering traditional wind turbine with a diffuser. Researchers are continuously working to develop a compact, lightweight, cost effective and feasible diffuser for wind turbines. The present work carried out to develop a diffuser with these stated objectives. A compact, lightweight inclined flanged diffuser developed for a micro wind turbine. Bare micro wind turbine and wind turbine covered with developed efficient inclined flanged diffuser tested in the field as per International Electrotechnical Commission (IEC) standards and results presented in the form of power curves. The prediction of annual energy production for both wind turbines determined as per IEC standards.


2021 ◽  
Vol 70 (9&10) ◽  
pp. 150
Author(s):  
J. Suraj Sayed ◽  
P. V. Sreeram ◽  
R. Ramesh Kumar

A domestic purpose micro wind turbine realised using bamboo blade is tested for the power generation at an interval of two years and compared the performance. A CFD analysis of turbine with five blade system is carried out for an average wind velocity of 2.5m/s and structural integrity of the bamboo blade unit based on the pressure distribution is assessed. For the input wind velocity, a stream lined out flow of 5.9 m/s is found when wind turbine rotates at 300 rpm and corresponding pressure distribution is found to be maximum at the expected location of blade tip as129 Pa. The static analysis shows a good margin. For 2.5 m/s, a wind turbine generates an average value of 3.8V with 0.25A (based on 15 <span>Ω</span>/10W load). The wind turbine has produced nearly the same power even after a period of two years.


2019 ◽  
Vol 13 (1) ◽  
pp. 4461-4476
Author(s):  
Nyoman Ade Satwika ◽  
R. Hantoro ◽  
E. Septyaningrum ◽  
A. W. Mahmashani

In recent years, Wind power generation in Indonesia is no longer a new issue. Indonesia has average velocity from 2 m/s  to 7 m/s. With the characteristic it, Indonesia is suitable for small (10 kW) and medium wind turbine installation (10-100 kW. Based on the monitoring data from meteorological, climatological, and geophysical agency (BMKG), the average wind velocity in Bali is 2 m/s – 5m/s, hence Bali has potential to development and utilization the source for wind turbine installation, There are four stations of BMKG in Bali, which each station is supervise the region. Weibull distribution has been represented on this research to calculate and determine the probability of the each of region to know the availibility of the source. Literally,  Jembrana station has the lowest availability of power available from the district and cities in Bali, with 0-0.2 W/m2, compared with some districts and cities in Bali, with wind density power between 0-2.88 W/m2 and also the KHK station has the highest probabiity of wind velocity than the other regions. Reconstruction design had been done, with basic data from probability in Bali. The result shows that the redesign of wind turbine give an effective power to extract the wind source.


2021 ◽  
pp. 0309524X2110445
Author(s):  
Leandro José Lemes Stival ◽  
Fernando Oliveira de Andrade

This study analyzes the performance of Park, Frandsen, and Larsen models to simulate wake development downstream from a wind turbine for freestream wind velocities ranging from 5 to 10 m/s. Analyses are performed in terms of normalized freestream velocity recovery for a longitudinal centerline downstream from the turbine and normalized wind velocity profiles for cross-sections located 500 and 700 m downstream from the wind turbine. Simulated results are compared with high resolution LiDAR data measured during operation of a North American wind farm. Comparisons of longitudinal profiles demonstrate that Larsen and Frandsen models provide the best agreement with measured data for the case of 5 m/s freestream wind velocity, whereas Park model performs best for the 6–9 m/s freestream wind velocity bins. Post-processing of measured data indicates asymmetry of wake profiles at the selected cross-sections. At these locations, Larsen model accurately predicts the west side of normalized velocity profiles, whereas Park and Frandsen models only predict the velocity recovery at the wake centerline.


2018 ◽  
Vol 5 (2) ◽  
pp. 70
Author(s):  
Yiyin Klistafani ◽  
Muh Iqbal Mukhsen ◽  
Muh Iqbal Mukhsen

The main objective of numerical simulation in thisstudies is to determine the effect of diffuser’s interior design onincreasing the diffuser augmented wind turbine (DAWT)performance by observing wind velocity increment. Numericalstudies were carried out using the computational Fluid Dynamics(CFD) method through a two-dimensional steady approach withAnsys Fluent 18.2 and Ansys Workbench 18.2 software. Thepresent studies spesifically investigate the shapes of diffuser,namely flat diffuser and curved diffuser. The studies demonstratethat the curved diffuser generates stronger increment of the windvelocity than flat diffuser (at centreline), which 1.842 times thefreestream velocity, while the flat diffuser is only able to increseup to 1.742 times the freestream velocity. The curved diffusershows the highest increment of the average wind velocity alongdiffuser with the greatest increment of 78.66 % and the flatdiffuser is only able to provide average wind velocity incrementup to 44.81%. The curved interor of diffuser is able to enlarge thewake area, so the effect of the suction flow entering the diffuserbecomes stronger. Therefore, curved diffuser is better to provideDAWT performance improvements.


2021 ◽  
Vol 71 (3&4) ◽  
pp. 53
Author(s):  
J. Suraj Sayed ◽  
R. Ramesh Kumar ◽  
P. V. Sreeram

A domestic purpose micro wind turbine realised using bamboo blade is tested for the power generation at an interval of two years and compared the performance. A CFD analysis of turbine with five blade system is carried out for an average wind velocity of 2.5m/s and structural integrity of the bamboo blade unit based on the pressure distribution is assessed. For the input wind velocity, a stream lined out flow of 5.9 m/s is found when wind turbine rotates at 300 rpm and corresponding pressure distribution is found to be maximum at the expected location of blade tip as 129 Pa. The static analysis shows a good margin. For 2.5 m/s, the wind turbine generates an average value of 3.8V with 0.25A (based on 15/10W load). The wind turbine has produced nearly the same power even after a period of two years.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


2015 ◽  
Vol 787 ◽  
pp. 217-221 ◽  
Author(s):  
B. Navin Kumar ◽  
K.M. Parammasivam

Wind energy is one of the most significant renewable energy sources in the world. It is the only promising renewable energy resource that only can satisfy the nation’s energy requirements over the growing demand for electricity. Wind turbines have been installed all over the wind potential areas to generate electricity. The wind turbines are designed to operate at a rated wind velocity. When the wind turbines are exposed to extreme wind velocities such as storm or hurricane, the wind turbine rotates at a higher speed that affects the structural stability of the entire system and may topple the system. Mechanical braking systems and Aerodynamic braking systems have been currently used to control the over speeding of the wind turbine at extreme wind velocity. As a novel approach, it is attempted to control the over speeding of the wind turbine by aerodynamic braking system by providing the chord wise spacing (opening). The turbine blade with chord wise spacing alters the pressure distribution over the turbine blade that brings down the rotational speed of the wind turbine within the allowable limit. In this approach, the over speeding of the wind turbine blades are effectively controlled without affecting the power production. In this paper the different parameters of the chord wise spacing such as position of the spacing, shape of the spacing, width of the spacing and impact on power generation are analyzed and the spacing parameters are experimentally optimized.


2012 ◽  
Vol 215-216 ◽  
pp. 1323-1326
Author(s):  
Ming Wei Xu ◽  
Jian Jun Qu ◽  
Han Zhang

A small vertical axis wind turbine with wind speed self-adapting was designed. The diameter and height of the turbine were both 0.7m. It featured that the blades were composed of movable and fixed blades, and the opening and closing of the movable blades realized the wind speed self-adapting. Aerodynamic performance of this new kind turbine was tested in a simple wind tunnel. Then the self-starting and power coefficient of the turbine were studied. The turbine with load could reliably self-start and operate stably even when the wind velocity was only 3.6 m/s. When the wind velocity was 8 m/s and the load torque was 0.1Nm, the movable blades no longer opened and the wind turbine realized the conversion from drag mode to lift mode. With the increase of wind speed, the maximum power coefficient of the turbine also improves gradually. Under 8 m/s wind speed, the maximum power coefficient of the turbine reaches to 12.26%. The experimental results showed that the new turbine not only improved the self-starting ability of the lift-style turbine, but also had a higher power coefficient in low tip speed ratio.


Sign in / Sign up

Export Citation Format

Share Document