scholarly journals Nanocarriers of Eu3+ doped silica nanoparticles modified by APTES for luminescent monitoring of cloxacillin

2021 ◽  
Vol 8 (5) ◽  
pp. 760-775
Author(s):  
João Otávio Donizette Malafatti ◽  
◽  
Thamara Machado de Oliveira Ruellas ◽  
Mariana Rodrigues Meirelles ◽  
Adriana Coatrini Thomazi ◽  
...  

<abstract> <p>Drug nanocarriers have been continuously improved to promote satisfactory release control. In this sense, luminescent materials have become an alternative option in clinical trials due to their ability to monitor drug delivery. Among the nanocarriers, silica stands out for structural stability, dispersibility, and surface reactivity. When using ceramic nanocarriers, one of the challenges is their interaction and selectivity capability for organic molecules, such as drugs. In order to overcome such adversity, superficial modifications can be carried out to enable a higher affinity for the desired drug. Thus, the present study aimed to obtain silica nanoparticles (NPs) doped with low concentrations of europium (III) superficially modified by (3-aminopropyl)triethoxysilane (APTES) to assess their interaction with the model drug cloxacillin benzathine. This drug was chosen because it is part of the ampicillin family and is commonly used in several treatments. Near-spherical and homogeneous silica NPs were obtained via sol-gel synthesis, with particle sizes of approximately 21 nm. It was possible to verify the fluorescence capacity of the silica NPs when doped with europium (III) in a mole percent that varied from 0.5 to 3.0%. A 10% volume percent of APTES caused the silica nanoparticles to increase the degree of hydrophobicity, with a shift in the contact angle from 8° to 51°. After surface modification by APTES, the silica nanocarrier (10 g·L<sup>-1</sup>) achieved a satisfactory degree of CLOX incorporation (25 g·L<sup>-1</sup>), increasing the adsorptive capacity to values above 50%. Therefore, silica NPs doped with europium (III) in a low percent of 0.5% (mole) modified by APTES showed promising results as an alternative option for trials and clinical studies of drug incorporation.</p> </abstract>

2007 ◽  
Vol 1007 ◽  
Author(s):  
Aracely Hernandez ◽  
Patricia Esquivel-Ferriño ◽  
Idalia Gomez ◽  
Lucia Cantu

ABSTRACTIn the present work, sol-gel method was used to incorporate in a ceramic material a non steroidal anti-inflammatory drug (piroxicam) as model drug. The incorporation of the drug in the SiO2 network was carried out at different sol-gel synthesis parameters, such as pH (3 and 5) and the alkoxide/water ratio (1:6 and 1:8). The biomaterial obtained was analyzed by thermal analysis TGA-DTA, infrared spectroscopy (FTIR), Scanning Electronic Microscopy (SEM) and X-ray diffraction (XRD); specific surface area and porosity were analyzed from nitrogen adsorption isotherm. Better drug incorporation into the material was achieved at the synthesis conditions of pH 5 and 1:6 alkoxide/water molar ratio.


2016 ◽  
Vol 78 (5) ◽  
pp. 586-595 ◽  
Author(s):  
O. V. Dement’eva ◽  
I. N. Senchikhin ◽  
M. E. Kartseva ◽  
V. A. Ogarev ◽  
A. V. Zaitseva ◽  
...  

2010 ◽  
Vol 20 (42) ◽  
pp. 9370 ◽  
Author(s):  
Joachim Allouche ◽  
Aurélie Le Beulze ◽  
Jean-Charles Dupin ◽  
Jean-Bernard Ledeuil ◽  
Sylvie Blanc ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3634 ◽  
Author(s):  
Luciano C. B. Lima ◽  
Caio C. Coelho ◽  
Fabrícia C. Silva ◽  
Andréia B. Meneguin ◽  
Hernane S. Barud ◽  
...  

Inorganic matrices and biopolymers have been widely used in pharmaceutical fields. They show properties such as biocompatibility, incorporation capacity, and controlled drug release, which can become more attractive if they are combined to form hybrid materials. This work proposes the synthesis of new drug delivery systems (DDS) based on magnesium phyllosilicate (Talc) obtained by the sol–gel route method, the biopolymer chitosan (Ch), and the inorganic-organic hybrid formed between this matrix (Talc + Ch), obtained using glutaraldehyde as a crosslink agent, and to study their incorporation/release capacity of amiloride as a model drug. The systems were characterized by X-ray diffraction (XRD), Therma analysis TG/DTG, and Fourier-transform infrared spectroscopy (FTIR) that supported the DDS’s formation. The hybrid showed a better drug incorporation capacity compared to the precursors, with a loading of 55.74, 49.53, and 4.71 mg g−1 for Talc + Ch, Talc, and Ch, respectively. The release assays were performed on a Hanson Research SR-8 Plus dissolver using apparatus I (basket), set to guarantee the sink conditions. The in vitro release tests showed a prolongation of the release rates of this drug for at least 4 h. This result proposes that the systems implies the slow and gradual release of the active substance, favoring the maintenance of the plasma concentration within a therapeutic window.


2014 ◽  
Vol 406 ◽  
pp. 5-10 ◽  
Author(s):  
A.A. Voronina ◽  
I.A. Tarasyuk ◽  
Yu.S. Marfin ◽  
A.S. Vashurin ◽  
E.V. Rumyantsev ◽  
...  

2018 ◽  
Vol 912 ◽  
pp. 77-81
Author(s):  
Renata Deliberato Aspasio ◽  
Jairo Freitas da Silva Jr. ◽  
Roger Borges ◽  
Juliana Marchi

The synthesis of silica particles at the nanoscale through the sol-gel method is of great interest due to their potential use in industrial applications. The Stöber method is the most used method for the silica nanoparticles production using ammonia as a catalyst. This work studied the sol-gel synthesis of amorphous silica nanoparticles described by Stöber, in order to evaluate the influence of the variation of the process parameters (molar ratio water/TEOS = 25 and 55, reagent feed rate = 0.6 mL/min and 18 mL/min, pH = 12 and 9 and reaction time of 0, 5, 30, 60 and 120 minutes) on the particle size distribution and structural functional groups. The particle size distribution was analyzed by dynamic light scattering (DLS) and the structural functional groups was analyzed by infrared spectroscopy through Fourier transform (FTIR). The molar ratio water/TEOS influenced the functional groups presents and the time influenced the particle diameter distribution. It was not possible to identify the influence of the feed rate and pH in the results. The particle diameters found were between 200-500nm. This result may be occurred due to mass diffusion and/or nanoparticles aggregation.


2003 ◽  
Vol 780 ◽  
Author(s):  
R. Houbertz ◽  
J. Schulz ◽  
L. Fröhlich ◽  
G. Domann ◽  
M. Popall ◽  
...  

AbstractReal 3-D sub-νm lithography was performed with two-photon polymerization (2PP) using inorganic-organic hybrid polymer (ORMOCER®) resins. The hybrid polymers were synthesized by hydrolysis/polycondensation reactions (modified sol-gel synthesis) which allows one to tailor their material properties towards the respective applications, i.e., dielectrics, optics or passivation. Due to their photosensitive organic functionalities, ORMOCER®s can be patterned by conventional photo-lithography as well as by femtosecond laser pulses at 780 nm. This results in polymerized (solid) structures where the non-polymerized parts can be removed by conventional developers.ORMOCER® structures as small as 200 nm or even below were generated by 2PP of the resins using femtosecond laser pulses. It is demonstrated that ORMOCER®s have the potential to be used in components or devices built up by nm-scale structures such as, e.g., photonic crystals. Aspects of the materials in conjunction to the applied technology are discussed.


Sign in / Sign up

Export Citation Format

Share Document