scholarly journals Polynomial time recognition of vertices contained in all (or no) maximum dissociation sets of a tree

2021 ◽  
Vol 7 (1) ◽  
pp. 569-578
Author(s):  
Jianhua Tu ◽  
◽  
Lei Zhang ◽  
Junfeng Du ◽  
Rongling Lang ◽  
...  

<abstract><p>In a graph $ G $, a dissociation set is a subset of vertices which induces a subgraph with vertex degree at most 1. Finding a dissociation set of maximum cardinality in a graph is NP-hard even for bipartite graphs and is called the maximum dissociation set problem. The complexity of the maximum dissociation set problem in various sub-classes of graphs has been extensively studied in the literature. In this paper, we study the maximum dissociation problem from different perspectives and characterize the vertices belonging to all maximum dissociation sets, and no maximum dissociation set of a tree. We present a linear time recognition algorithm which can determine whether a given vertex in a tree is contained in all (or no) maximum dissociation sets of the tree. Thus for a tree with $ n $ vertices, we can find all vertices belonging to all (or no) maximum dissociation sets of the tree in $ O(n^2) $ time.</p></abstract>

Author(s):  
Mengya Li ◽  
Wensong Lin

Let $\mathcal{H}$ be a family of graphs. An $\mathcal{H}$-packing of a graph $G$ is a set $\{G_1,G_2,\dots,G_k\}$ of disjoint subgraphs of $G$ such that each $G_j$ is isomorphic to some element of $\mathcal{H}$. An $\mathcal{H}$-packing of a graph $G$ that covers the maximum number of vertices of $G$ is called a maximum $\mathcal{H}$-packing of $G$. The $\mathcal{H}$-packing problem seeks to find a maximum $\mathcal{H}$-packing of a graph. Let $i$ be a positive integer. An $i$-star is a complete bipartite graph $K_{1,i}$. This paper investigates the $\mathcal{H}$-packing problem with $\mathcal{H}$ being a family of stars. For an arbitrary family $\mathcal{S}$ of stars, we design a linear-time algorithm for the $\mathcal{S}$-packing problem in trees. Let $t$ be a positive integer. An $\mathcal{H}$-packing is called a $t^+$-star packing if $\mathcal{H}$ consists of all $i$-stars with $i\ge t$. We show that the $t^+$-star packing problem for $t\ge 2$ is NP-hard in bipartite graphs. As a consequence, the $2^+$-star packing problem is NP-hard even in bipartite graphs with maximum degree at most $4$. Let $T$ and $t$ be two positive integers with $T>t$. An $\mathcal{H}$-packing is called a $T\setminus t$-star packing if $\mathcal{H}=\{K_{1,1},K_{1,2},\dots,K_{1,T}\}\setminus \{K_{1,t}\}$. For $t\ge 2$, we present a $\frac{t}{t+1}$-approximation algorithm for the $T\setminus t$-star packing problem that runs in $\mathcal{O}(mn^{1/2})$ time, where $n$ is the number of vertices and $m$ the number of edges of the input graph. We also design a $\frac{1}{2}$-approximation algorithm for the $2^+$-star packing problem that runs in $\mathcal{O}(m)$ time, where $m$ is the number of edges of the input graph. As a consequence, every connected graph with at least $3$ vertices has a $2^+$-star packing that covers at least half of its vertices.


2017 ◽  
Vol 29 (1) ◽  
pp. 3-37 ◽  
Author(s):  
GIORGIO BACCI ◽  
GIOVANNI BACCI ◽  
KIM G. LARSEN ◽  
RADU MARDARE

We study two well-known linear-time metrics on Markov chains (MCs), namely, the strong and strutter trace distances. Our interest in these metrics is motivated by their relation to the probabilistic linear temporal logic (LTL)-model checking problem: we prove that they correspond to the maximal differences in the probability of satisfying the same LTL and LTL−X(LTL without next operator) formulas, respectively.The threshold problem for these distances (whether their value exceeds a given threshold) is NP-hard and not known to be decidable. Nevertheless, we provide an approximation schema where each lower and upper approximant is computable in polynomial time in the size of the MC.The upper approximants are bisimilarity-like pseudometrics (hence, branching-time distances) that converge point-wise to the linear-time metrics. This convergence is interesting in itself, because it reveals a non-trivial relation between branching and linear-time metric-based semantics that does not hold in equivalence-based semantics.


2014 ◽  
Vol 24 (03) ◽  
pp. 225-236 ◽  
Author(s):  
DAVID KIRKPATRICK ◽  
BOTING YANG ◽  
SANDRA ZILLES

Given an arrangement A of n sensors and two points s and t in the plane, the barrier resilience of A with respect to s and t is the minimum number of sensors whose removal permits a path from s to t such that the path does not intersect the coverage region of any sensor in A. When the surveillance domain is the entire plane and sensor coverage regions are unit line segments, even with restricted orientations, the problem of determining the barrier resilience is known to be NP-hard. On the other hand, if sensor coverage regions are arbitrary lines, the problem has a trivial linear time solution. In this paper, we study the case where each sensor coverage region is an arbitrary ray, and give an O(n2m) time algorithm for computing the barrier resilience when there are m ⩾ 1 sensor intersections.


1999 ◽  
Vol 10 ◽  
pp. 199-241 ◽  
Author(s):  
T. Lukasiewicz

We study the problem of probabilistic deduction with conditional constraints over basic events. We show that globally complete probabilistic deduction with conditional constraints over basic events is NP-hard. We then concentrate on the special case of probabilistic deduction in conditional constraint trees. We elaborate very efficient techniques for globally complete probabilistic deduction. In detail, for conditional constraint trees with point probabilities, we present a local approach to globally complete probabilistic deduction, which runs in linear time in the size of the conditional constraint trees. For conditional constraint trees with interval probabilities, we show that globally complete probabilistic deduction can be done in a global approach by solving nonlinear programs. We show how these nonlinear programs can be transformed into equivalent linear programs, which are solvable in polynomial time in the size of the conditional constraint trees.


Algorithmica ◽  
2022 ◽  
Author(s):  
Boris Klemz ◽  
Günter Rote

AbstractA bipartite graph $$G=(U,V,E)$$ G = ( U , V , E ) is convex if the vertices in V can be linearly ordered such that for each vertex $$u\in U$$ u ∈ U , the neighbors of u are consecutive in the ordering of V. An induced matchingH of G is a matching for which no edge of E connects endpoints of two different edges of H. We show that in a convex bipartite graph with n vertices and mweighted edges, an induced matching of maximum total weight can be computed in $$O(n+m)$$ O ( n + m ) time. An unweighted convex bipartite graph has a representation of size O(n) that records for each vertex $$u\in U$$ u ∈ U the first and last neighbor in the ordering of V. Given such a compact representation, we compute an induced matching of maximum cardinality in O(n) time. In convex bipartite graphs, maximum-cardinality induced matchings are dual to minimum chain covers. A chain cover is a covering of the edge set by chain subgraphs, that is, subgraphs that do not contain induced matchings of more than one edge. Given a compact representation, we compute a representation of a minimum chain cover in O(n) time. If no compact representation is given, the cover can be computed in $$O(n+m)$$ O ( n + m ) time. All of our algorithms achieve optimal linear running time for the respective problem and model, and they improve and generalize the previous results in several ways: The best algorithms for the unweighted problem versions had a running time of $$O(n^2)$$ O ( n 2 ) (Brandstädt et al. in Theor. Comput. Sci. 381(1–3):260–265, 2007. 10.1016/j.tcs.2007.04.006). The weighted case has not been considered before.


Algorithms ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 23 ◽  
Author(s):  
Charles Phillips ◽  
Kai Wang ◽  
Erich Baker ◽  
Jason Bubier ◽  
Elissa Chesler ◽  
...  

Let k denote an integer greater than 2, let G denote a k-partite graph, and let S denote the set of all maximal k-partite cliques in G. Several open questions concerning the computation of S are resolved. A straightforward and highly-scalable modification to the classic recursive backtracking approach of Bron and Kerbosch is first described and shown to run in O(3n/3) time. A series of novel graph constructions is then used to prove that this bound is best possible in the sense that it matches an asymptotically tight upper limit on |S|. The task of identifying a vertex-maximum element of S is also considered and, in contrast with the k = 2 case, shown to be NP-hard for every k ≥ 3. A special class of k-partite graphs that arises in the context of functional genomics and other problem domains is studied as well and shown to be more readily solvable via a polynomial-time transformation to bipartite graphs. Applications, limitations, potentials for faster methods, heuristic approaches, and alternate formulations are also addressed.


10.29007/v68w ◽  
2018 ◽  
Author(s):  
Ying Zhu ◽  
Mirek Truszczynski

We study the problem of learning the importance of preferences in preference profiles in two important cases: when individual preferences are aggregated by the ranked Pareto rule, and when they are aggregated by positional scoring rules. For the ranked Pareto rule, we provide a polynomial-time algorithm that finds a ranking of preferences such that the ranked profile correctly decides all the examples, whenever such a ranking exists. We also show that the problem to learn a ranking maximizing the number of correctly decided examples (also under the ranked Pareto rule) is NP-hard. We obtain similar results for the case of weighted profiles when positional scoring rules are used for aggregation.


1986 ◽  
Vol 9 (3) ◽  
pp. 323-342
Author(s):  
Joseph Y.-T. Leung ◽  
Burkhard Monien

We consider the computational complexity of finding an optimal deadlock recovery. It is known that for an arbitrary number of resource types the problem is NP-hard even when the total cost of deadlocked jobs and the total number of resource units are “small” relative to the number of deadlocked jobs. It is also known that for one resource type the problem is NP-hard when the total cost of deadlocked jobs and the total number of resource units are “large” relative to the number of deadlocked jobs. In this paper we show that for one resource type the problem is solvable in polynomial time when the total cost of deadlocked jobs or the total number of resource units is “small” relative to the number of deadlocked jobs. For fixed m ⩾ 2 resource types, we show that the problem is solvable in polynomial time when the total number of resource units is “small” relative to the number of deadlocked jobs. On the other hand, when the total number of resource units is “large”, the problem becomes NP-hard even when the total cost of deadlocked jobs is “small” relative to the number of deadlocked jobs. The results in the paper, together with previous known ones, give a complete delineation of the complexity of this problem under various assumptions of the input parameters.


2021 ◽  
Vol 83 (1) ◽  
Author(s):  
David Schaller ◽  
Manuel Lafond ◽  
Peter F. Stadler ◽  
Nicolas Wieseke ◽  
Marc Hellmuth

AbstractSeveral implicit methods to infer horizontal gene transfer (HGT) focus on pairs of genes that have diverged only after the divergence of the two species in which the genes reside. This situation defines the edge set of a graph, the later-divergence-time (LDT) graph, whose vertices correspond to genes colored by their species. We investigate these graphs in the setting of relaxed scenarios, i.e., evolutionary scenarios that encompass all commonly used variants of duplication-transfer-loss scenarios in the literature. We characterize LDT graphs as a subclass of properly vertex-colored cographs, and provide a polynomial-time recognition algorithm as well as an algorithm to construct a relaxed scenario that explains a given LDT. An edge in an LDT graph implies that the two corresponding genes are separated by at least one HGT event. The converse is not true, however. We show that the complete xenology relation is described by an rs-Fitch graph, i.e., a complete multipartite graph satisfying constraints on the vertex coloring. This class of vertex-colored graphs is also recognizable in polynomial time. We finally address the question “how much information about all HGT events is contained in LDT graphs” with the help of simulations of evolutionary scenarios with a wide range of duplication, loss, and HGT events. In particular, we show that a simple greedy graph editing scheme can be used to efficiently detect HGT events that are implicitly contained in LDT graphs.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Daniel Vert ◽  
Renaud Sirdey ◽  
Stéphane Louise

AbstractThis paper experimentally investigates the behavior of analog quantum computers as commercialized by D-Wave when confronted to instances of the maximum cardinality matching problem which is specifically designed to be hard to solve by means of simulated annealing. We benchmark a D-Wave “Washington” (2X) with 1098 operational qubits on various sizes of such instances and observe that for all but the most trivially small of these it fails to obtain an optimal solution. Thus, our results suggest that quantum annealing, at least as implemented in a D-Wave device, falls in the same pitfalls as simulated annealing and hence provides additional evidences suggesting that there exist polynomial-time problems that such a machine cannot solve efficiently to optimality. Additionally, we investigate the extent to which the qubits interconnection topologies explains these latter experimental results. In particular, we provide evidences that the sparsity of these topologies which, as such, lead to QUBO problems of artificially inflated sizes can partly explain the aforementioned disappointing observations. Therefore, this paper hints that denser interconnection topologies are necessary to unleash the potential of the quantum annealing approach.


Sign in / Sign up

Export Citation Format

Share Document