Effect of Doping Concentration on Resistive Switching Behaviors of Cu-doped ZnO films

2011 ◽  
Vol 59 (2) ◽  
pp. 304-307 ◽  
Author(s):  
Min Choul Kim ◽  
Keun Yong Lim ◽  
Chang Oh Kim ◽  
Suk-Ho Choi
2016 ◽  
Vol 99 ◽  
pp. 75-80
Author(s):  
Arsen Igityan ◽  
Yevgenia Kafadaryan ◽  
Natella Aghamalyan ◽  
Silva Petrosyan

Lithium (0, 1.0 and 10 at.%)-doped ZnO (LiZnO) polycrystalline thin films were deposited on Pt/SiO2, LaB6/Al2O3, Au/SiO2 and 20 at.% fluorine-doped SnO2(FTO)/glass substrates by an e-beam evaporation method. Metal/LiZnO/Metal sandwich structures were constructed by depositing different top electrodes (Ag, Al and Au) to find memristive characteristics depending on the lithium content and electrode materials. Compared with undoped and 1%Li-doped ZnO devices, the 10 at.%Li-doped ZnO (10LiZnO) device exhibits resistive switching memory. The Ag/10LiZnO/Pt and Ag/10LiZnO/LaB6 memory devices exhibit unipolar resistive switching behavior while bipolar resistive switching in Ag/10LiZnO/FTO, Au/10LiZnO/FTO and Al/10LiZnO/LaB6 structures is revealed. The dominant conduction mechanisms are explained in terms of Ohmic behavior, space charge limited current (SCLC) and Schottky emission for the URS and BRS behaviors.


2006 ◽  
Vol 287 (1) ◽  
pp. 78-84 ◽  
Author(s):  
Shou-Yi Kuo ◽  
Wei-Chun Chen ◽  
Fang-I Lai ◽  
Chin-Pao Cheng ◽  
Hao-Chung Kuo ◽  
...  

2018 ◽  
Vol 15 (3) ◽  
pp. 218-223 ◽  
Author(s):  
T. Sreenivasulu Reddy ◽  
G. Phaneendra Reddy ◽  
K.T. Ramakrishna Reddy

Spray deposited Mo-doped zinc oxide (MZO) films were grown on glass substrates at different substrate temperatures (Ts)that varied in the range of 300°C-450 °C at aconstant Mo-doping concentration of 2 at. %.XRD spectra revealed better crystallinity of films prepared atTs400 °C. FTIR spectra showed the vibrational modes related toZn–O bonding.Photoluminescence spectra of MZO films showed a peakrelated toviolet emissionsbetween 400 nm and 420 nm. Electrical analysis showed n type semiconducting nature of the films and the films grown at Ts= 400 °C hadlow resistivity and high mobility.Adetailed analysis on theeffect of substrate temperatureon photoluminescence and electrical propertiesof MZO films wasdiscussed and reported.


2009 ◽  
Vol 620-622 ◽  
pp. 735-740 ◽  
Author(s):  
Feng Pan ◽  
Xue Jing Liu ◽  
Yu Chao Yang ◽  
Cheng Song ◽  
Fei Zeng

In this paper, we report the multiferroic and piezoelectric behavior observed in transition-metal doped ZnO films. The experimental results indicated that the Co-doped ZnO films deposited by magnetron sputtering possess a Curie temperature higher than 700K, and the magnetic moments of Co are intimatedly correlated to the doping concentration and the substrate. A giant magnetic moment of 6.1 B/Co is observed in (4 at.%) Co-doped ZnO films. Ferroelectric and ferromagnetic behaviors simultaneously were also obtained in V and Cr doped ZnO films on Pt(111)/Ti/SiO2/Si(100) substrates by reactive sputtering method, revealing a multiferroic nature. The high piezoelectric d33 coefficient 80-120 pm/V has also been achieved by Cr and V substitutions, which could make Cr-doped or V-doped ZnO a promising material in piezoelectric devices.


2019 ◽  
Vol 26 (05) ◽  
pp. 1850197 ◽  
Author(s):  
SELMA M. H. AL-JAWAD ◽  
SABAH H. SABEEH ◽  
ALI A. TAHA ◽  
HUSSEIN A. JASSIM

Pure and Fe-doped zinc oxide (ZnO) sol–gel thin films were deposited by spin-coating process. Pure ZnO and Fe–ZnO films, containing Fe of 2–8[Formula: see text]wt.%, were annealed at 500∘C for 2[Formula: see text]h. All prepared thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV–visible (UV–vis) spectroscopy. XRD studies show the polycrystalline nature with hexagonal wurtzite structure of pure ZnO and Fe–ZnO thin films. The crystallite size of the prepared samples reduced with increasing Fe doping concentrations. AFM and SEM results indicated that the average grain size decreased as Fe doping concentration increased. The transmittance spectra were then recorded at wavelengths ranging from 300[Formula: see text]nm to 1000[Formula: see text]nm. The films produced yielded high transmission at visible regions. The optical bandgap energy of spin-coated films also decreased as Fe doping concentration increased. In particular, their optical bandgap energies were 3.75, 3.6, 3.5, 3.45 and 3.3 eV at 0-, 2-, 4-, 6- and 8-wt.% Fe concentrations, respectively. Antibacterial activities of pure ZnO and Fe–ZnO against E. coli and S. aureus were evaluated by international recognized test (JIS Z 2801). The results showed that pure and Fe-doped ZnO thin films have antibacterial inhibition zone against E. coli and S. aureus. Gram-positive bacteria seemed be more resistant to pure and Fe-doped ZnO thin films than gram-negative bacteria. The test shows an incremental increase in antibacterial activity of the thin films when dopant ratio increased under UV light.


2018 ◽  
Vol 280 ◽  
pp. 43-49
Author(s):  
Zi Neng Ng ◽  
Kah Yoong Chan

Zinc oxide (ZnO) has gained worldwide attention due to its direct wide band gap and large exciton binding energy, which are important properties in the application of emerging optoelectronic devices. By doping ZnO with donor elements, a combination of good n-type conductivity and good transparency in the visible and near UV range can be achieved. Co-doping ZnO with several types of dopants is also beneficial in improving the electronic properties of ZnO films. To the best of our knowledge, the fundamental properties of gallium-tin (Ga-Sn) co-doped ZnO (GSZO) films were rarely explored. In this work, we attempt to coat GSZO films on glass substrates via sol-gel spin-coating method. The Ga-Sn co-doping ratio was fixed at 1:1 and the concentration of the dopants was varied at 0.5, 1.0, 1.5, and 2 at.% with respect to the precursor. The AFM image show granular features on the morphology of all GSZO films. All samples also exhibit a preferential c-axis orientation as detected by XRD. The XRD indicates higher crystal quality and larger crystallite size on GSZO thin films at 2.0 at.% and agrees well with the AFM results. However, the transparency and optical band-gap of the GSZO thin films degrade with higher co-doping concentration. The best electrical properties were achieved at co-doping concentration of 1 at.% with conductivity and carrier density of 7.50 × 10-2S/cm and 1.37 × 1016cm-3, respectively. At 1.0 at.% co-doping concentration, optimal optical transmittance and electrical properties were achieved, making it promising in the application of optoelectronics.


Sign in / Sign up

Export Citation Format

Share Document