Turbulence Flow Simulation For Wings In Ground Effect With Two Ground Conditions: Fixed and Moving Ground

2003 ◽  
Vol 145 (a3) ◽  
pp. 18 ◽  
Author(s):  
H H Chun
2017 ◽  
Vol 819 ◽  
pp. 621-655 ◽  
Author(s):  
Fang Fang ◽  
Kenneth L. Ho ◽  
Leif Ristroph ◽  
Michael J. Shelley

We explore theoretically the aerodynamics of a recently fabricated jellyfish-like flying machine (Ristroph & Childress, J. R. Soc. Interface, vol. 11 (92), 2014, 20130992). This experimental device achieves flight and hovering by opening and closing opposing sets of wings. It displays orientational or postural flight stability without additional control surfaces or feedback control. Our model ‘machine’ consists of two mirror-symmetric massless flapping wings connected to a volumeless body with mass and moment of inertia. A vortex sheet shedding and wake model is used for the flow simulation. Use of the fast multipole method allows us to simulate for long times and resolve complex wakes. We use our model to explore the design parameters that maintain body hovering and ascent, and investigate the performance of steady ascent states. We find that ascent speed and efficiency increase as the wings are brought closer, due to a mirror-image ‘ground-effect’ between the wings. Steady ascent is approached exponentially in time, which suggests a linear relationship between the aerodynamic force and ascent speed. We investigate the orientational stability of hovering and ascent states by examining the flyer’s free response to perturbation from a transitory external torque. Our results show that bottom-heavy flyers (centre of mass below the geometric centre) are capable of recovering from large tilts, whereas the orientation of the top-heavy flyers diverges. These results are consistent with the experimental observations in Ristroph & Childress (J. R. Soc. Interface, vol. 11 (92), 2014, 20130992), and shed light upon future designs of flapping-wing micro aerial vehicles that use jet-based mechanisms.


Author(s):  
Ji-qiang Niu ◽  
Xi-feng Liang ◽  
Dan Zhou ◽  
Yue-ming Wang

Due to the rapid development of high-speed railways and the increasing speed of trains, the aerodynamic phenomenon caused by moving trains could be affected. Therefore, the scaled model test has been widely used to simulate the aerodynamic performance of the stationary train in wind tunnel. However, it is difficult to disregard the influence of the ground effect on the aerodynamic performance of trains. In this study, the delayed detached eddy simulation based on the shear stress transport κ–ω turbulence model is used to investigate the aerodynamic performance of trains on three ground conditions (stationary floor + stationary ballast, stationary ground + stationary ballast, and stationary ballast). The numerical method used in this paper is verified by a wind tunnel test. The way the three ground conditions influence the flow field around the train is also analyzed. The results show that the ground condition affects the thickness of the ballast boundary layers without a train, thickness of the train boundary layers, train drag, distribution of pressure and velocity along the train, and the size of the wake region; however, the ground condition had a little effect on the flow structures around the train tail. These findings can help in designing the wind tunnel experiment.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Kwang Hee Ko ◽  
Gyubin Jang ◽  
Kyungmi Park ◽  
Kangwook Kim

This paper presents a method to identify landmines in various burial conditions. A ground penetration radar is used to generate data set, which is then processed to reduce the ground effect and noise to obtain landmine signals. Principal components and Fourier coefficients of the landmine signals are computed, which are used as features of each landmine for detection and identification. A database is constructed based on the features of various types of landmines and the ground conditions, including the different levels of moisture and types of ground and the burial depths of the landmines. Detection and identification is performed by searching for features in the database. For a robust decision, the counting method and the Mahalanobis distance-based likelihood ratio test method are employed. Four landmines, different in size and material, are considered as examples that demonstrate the efficiency of the proposed method for detecting and identifying landmines.


2014 ◽  
Vol 9 (4) ◽  
pp. 519-525
Author(s):  
Jun Li ◽  
Yongmei Cao ◽  
Chuanchang Gao

Tianshan Pumping Station takes water from the Yellow River. A three-dimensional (3D) mathematical model of turbulence flow patterns in the forebay and suction sump was developed and a 3D turbulent flow simulation technique applied to numerical calculation of the flow pattern characteristics in both the original and rebuilt forebays of the pumping station. The numerical simulation results were analyzed and contrasted. The results showed that, with technical improvement, surface backflow was avoided, and bottom velocity in the forebay was increased while bottom velocity in the suction sump was unchanged. Because of this, there was no sediment deposition in the bottom of the forebay, and flow velocities in the forebay and suction sump were more evenly distributed.


2021 ◽  
Author(s):  
YavuzHakan Ozdemir ◽  
Baris Barlas

Abstract The purpose of this paper is to develop a Boundary Element Based Method (BEM) for determining the steady potential about two and three dimensional airfoil. The numerical investigation of NACA 0012 airfoil with using Boundary Element Method is utilized. Two different physical problems of the NACA 0012 airfoil are examined: potential flow around airfoil in an unbounded fluid and potential flow prediction with ground effect. Computation of potential flow around the airfoil is investigated by the mixed constant strength source and constant strength dipole based panel method. Boundary Element Code is written in FORTRAN. To check the accuracy of the 2D boundary element based code, the validation studies are carried out by comparing the present results obtained for the NACA 0012 airfoil from the XFoil and other published simulation results. 3D results are also evaluating with the available experimental and other numerical simulation results. The numerical outcomes are examined in terms of pressure distribution and lifting force on the foil.


2014 ◽  
Vol 1 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Dipankar Chatterjee ◽  
◽  
Satish Gupta ◽  
Chebolu Aravind ◽  
Rakesh Roshan

Sign in / Sign up

Export Citation Format

Share Document