Role of the brain in ventricular fibrillation and hypertension: from animal models to early human studies.

2007 ◽  
Vol 74 (Suppl_1) ◽  
pp. S73-S73 ◽  
Author(s):  
J. E Skinner
2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Cezar Gavrilovici ◽  
Yulan Jiang ◽  
Ivana Kiroski ◽  
G Campbell Teskey ◽  
Jong M Rho ◽  
...  

Abstract Mutations in cytoskeletal proteins can cause early infantile and childhood epilepsies by misplacing newly born neurons and altering neuronal connectivity. In the adult epileptic brain, cytoskeletal disruption is often viewed as being secondary to aberrant neuronal activity and/or death, and hence simply represents an epiphenomenon. Here, we review the emerging evidence collected in animal models and human studies implicating the cytoskeleton as a potential causative factor in adult epileptogenesis. Based on the emerging evidence, we propose that cytoskeletal disruption may be an important pathogenic mechanism in the mature epileptic brain.


2011 ◽  
Vol 33 (6) ◽  
pp. 619-626 ◽  
Author(s):  
Philipp Capetian ◽  
Máté Döbrössy ◽  
Christian Winkler ◽  
Marco Prinz ◽  
Guido Nikkhah

BJPsych Open ◽  
2021 ◽  
Vol 7 (S1) ◽  
pp. S265-S266
Author(s):  
Natalia Kyrtata ◽  
Ben Dickie ◽  
Hedley Emsley ◽  
Laura Parkes

BackgroundPhysiological brain function depends on tight glucose regulation, including transport and phosphorylation, the first step in its metabolism. Impaired glucose regulation is increasingly implicated in the pathophysiology of Alzheimer's disease (AD). Glucose hypometabolism in AD may be at least partly due to impaired glucose transport at the blood-brain barrier (BBB). Glucose transporters (GLUTs) are an integral component of the BBB. There is evidence of a significant reduction in vascular and non-vascular forms of GLUT1 and GLUT3 in AD brains compared to age-matched controls. Glucose transport, as well as phosphorylation, appears to be a rate limiting step for glucose metabolism in the brain. We have reviewed the literature on glucose transport abnormalities in AD and the effect such abnormalities have on the brain.MethodPublished literature between 1st January 1946 and 1st November 2019 was identified using EMBASE and MEDLINE databases and titles and abstracts were scanned. Human studies (autopsy and imaging) and data from animal models were included while reviews, letters and cellular or molecular studies were excluded from the search.ResultAutopsy studies in AD patients show significant reductions in GLUT3 in areas of the brain closely associated with AD pathology. Patients with AD and diabetes showed greater reductions of GLUT1 and GLUT3. A longitudinal study showed significant reductions in GLUT3 levels which correlated with greater amyloid-β (Aβ) and neurofibrillary tangle pathological burden in participants with AD pathology at post-mortem but without evidence of cognitive dysfunction in their lifetime. Some studies showed increased GLUT1, with others showing reduced GLUT1, levels in AD brain. A newly recognised GLUT12 appears to be increased in AD. Animal studies showed similar results with GLUT1 and GLUT3 knockout animal models exhibiting AD pathology, while overexpression of GLUT1 or treatment with metformin decreased Aβ toxicity in a Drosophila model of AD. GLUT2 levels were increased in both human AD brain and in an animal model of AD. Imaging studies using fluorodeoxyglucose [18F]FDG with positron emission tomography (FDG-PET) in AD subjects show reductions in glucose transport and glucose metabolism in areas most affected in AD. A small randomised control trial showed anti-diabetic medications improved the glucose transport in AD subjects.ConclusionGLUTs play a significant role in AD pathology with evidence suggesting that GLUT3 reductions may precede the onset of clinical symptoms, while GLUT2 and GLUT12 may have a compensatory role. Repurposing anti-diabetic drugs shows promising results in both animal and human studies of AD.


2008 ◽  
Vol 363 (1507) ◽  
pp. 3137-3146 ◽  
Author(s):  
Terry E Robinson ◽  
Kent C Berridge

We present a brief overview of the incentive sensitization theory of addiction. This posits that addiction is caused primarily by drug-induced sensitization in the brain mesocorticolimbic systems that attribute incentive salience to reward-associated stimuli. If rendered hypersensitive, these systems cause pathological incentive motivation (‘wanting’) for drugs. We address some current questions including: what is the role of learning in incentive sensitization and addiction? Does incentive sensitization occur in human addicts? Is the development of addiction-like behaviour in animals associated with sensitization? What is the best way to model addiction symptoms using animal models? And, finally, what are the roles of affective pleasure or withdrawal in addiction?


2008 ◽  
Vol 2 (2) ◽  
pp. 215-233 ◽  
Author(s):  
Fabian Blank ◽  
Christophe von Garnier ◽  
Carolina Obregon ◽  
Barbara Rothen-Rutishauser ◽  
Peter Gehr ◽  
...  

2005 ◽  
Vol 50 (11) ◽  
pp. 695-702 ◽  
Author(s):  
Yanina Shulman ◽  
Philip G Tibbo

Schizophrenia is a psychiatric disorder with a complicated pathophysiology, involving many biochemical abnormalities in the brain. Because neuroactive steroids (NASs) modulate neurotransmitter systems that are implicated in the pathology of schizophrenia, recent research has focused on examining the role that NASs play in the illness. Although research in this area is relatively new, it appears that NASs may potentially be implicated in the pathophysiology of the illness. This paper reviews the current understanding of NASs, the research literature on NASs in schizophrenia and in animal models of the illness (including the effects of antipsychotic medication on NASs) and on the potential antipsychotic role of NASs themselves and, finally, discusses future directions for this area of schizophrenia research.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Hila Ben-Yehuda ◽  
Michal Arad ◽  
Javier María Peralta Ramos ◽  
Efrat Sharon ◽  
Giulia Castellani ◽  
...  

Abstract Background For decades, dementia has been characterized by accumulation of waste in the brain and low-grade inflammation. Over the years, emerging studies highlighted the involvement of the immune system in neurodegenerative disease emergence and severity. Numerous studies in animal models of amyloidosis demonstrated the beneficial role of monocyte-derived macrophages in mitigating the disease, though less is known regarding tauopathy. Boosting the immune system in animal models of both amyloidosis and tauopathy, resulted in improved cognitive performance and in a reduction of pathological manifestations. However, a full understanding of the chain of events that is involved, starting from the activation of the immune system, and leading to disease mitigation, remained elusive. Here, we hypothesized that the brain-immune communication pathway that is needed to be activated to combat tauopathy involves monocyte mobilization via the C-C chemokine receptor 2 (CCR2)/CCL2 axis, and additional immune cells, such as CD4+ T cells, including FOXP3+ regulatory CD4+ T cells. Methods We used DM-hTAU transgenic mice, a mouse model of tauopathy, and applied an approach that boosts the immune system, via blocking the inhibitory Programmed cell death protein-1 (PD-1)/PD-L1 pathway, a manipulation previously shown to alleviate disease symptoms and pathology. An anti-CCR2 monoclonal antibody (αCCR2), was used to block the CCR2 axis in a protocol that partially eliminates monocytes from the circulation at the time of anti-PD-L1 antibody (αPD-L1) injection, and for the critical period of their recruitment into the brain following treatment. Results Performance of DM-hTAU mice in short-term and working memory tasks, revealed that the beneficial effect of αPD-L1, assessed 1 month after a single injection, was abrogated following blockade of CCR2. This was accompanied by the loss of the beneficial effect on disease pathology, assessed by measurement of cortical aggregated human tau load using Homogeneous Time Resolved Fluorescence-based immunoassay, and by evaluation of hippocampal neuronal survival. Using both multiparametric flow cytometry, and Cytometry by Time Of Flight, we further demonstrated the accumulation of FOXP3+ regulatory CD4+ T cells in the brain, 12 days following the treatment, which was absent subsequent to CCR2 blockade. In addition, measurement of hippocampal levels of the T-cell chemoattractant, C-X-C motif chemokine ligand 12 (Cxcl12), and of inflammatory cytokines, revealed that αPD-L1 treatment reduced their expression, while blocking CCR2 reversed this effect. Conclusions The CCR2/CCL2 axis is required to modify pathology using PD-L1 blockade in a mouse model of tauopathy. This modification involves, in addition to monocytes, the accumulation of FOXP3+ regulatory CD4+ T cells in the brain, and the T-cell chemoattractant, Cxcl12.


2013 ◽  
Vol 34 (4) ◽  
pp. 797-812 ◽  
Author(s):  
Nadja Schröder ◽  
Luciana Silva Figueiredo ◽  
Maria Noêmia Martins de Lima

Author(s):  
J.E. Johnson

Although neuroaxonal dystrophy (NAD) has been examined by light and electron microscopy for years, the nature of the components in the dystrophic axons is not well understood. The present report examines nucleus gracilis and cuneatus (the dorsal column nuclei) in the brain stem of aging mice.Mice (C57BL/6J) were sacrificed by aldehyde perfusion at ages ranging from 3 months to 23 months. Several brain areas and parts of other organs were processed for electron microscopy.At 3 months of age, very little evidence of NAD can be discerned by light microscopy. At the EM level, a few axons are found to contain dystrophic material. By 23 months of age, the entire nucleus gracilis is filled with dystrophic axons. Much less NAD is seen in nucleus cuneatus by comparison. The most recurrent pattern of NAD is an enlarged profile, in the center of which is a mass of reticulated material (reticulated portion; or RP).


Sign in / Sign up

Export Citation Format

Share Document