scholarly journals Neuroactive Steroids in Schizophrenia

2005 ◽  
Vol 50 (11) ◽  
pp. 695-702 ◽  
Author(s):  
Yanina Shulman ◽  
Philip G Tibbo

Schizophrenia is a psychiatric disorder with a complicated pathophysiology, involving many biochemical abnormalities in the brain. Because neuroactive steroids (NASs) modulate neurotransmitter systems that are implicated in the pathology of schizophrenia, recent research has focused on examining the role that NASs play in the illness. Although research in this area is relatively new, it appears that NASs may potentially be implicated in the pathophysiology of the illness. This paper reviews the current understanding of NASs, the research literature on NASs in schizophrenia and in animal models of the illness (including the effects of antipsychotic medication on NASs) and on the potential antipsychotic role of NASs themselves and, finally, discusses future directions for this area of schizophrenia research.

Author(s):  
Igor Ponomarev

Alcohol use disorder (AUD) is characterized by clinically significant impairments in health and social function. Epigenetic mechanisms of gene regulation may provide an attractive explanation for how early life exposures to alcohol contribute to the development of AUD and exert lifelong effects on the brain. This chapter provides a critical discussion of the role of epigenetic mechanisms in AUD etiology and the potential of epigenetic research to improve diagnosis, evaluate risks for alcohol-induced pathologies, and promote development of novel therapies for the prevention and treatment of AUD. Challenges of the current epigenetic approaches and future directions are also discussed.


2021 ◽  
Author(s):  
Jared S. Katzeff ◽  
Woojin Scott Kim

Abstract ATP-binding cassette (ABC) transporters are one of the largest groups of transporter families in humans. ABC transporters mediate the translocation of a diverse range of substrates across cellular membranes, including amino acids, nucleosides, lipids, sugars and xenobiotics. Neurodegenerative diseases are a group of brain diseases that detrimentally affect neurons and other brain cells and are usually associated with deposits of pathogenic proteins in the brain. Major neurodegenerative diseases include Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. ABC transporters are highly expressed in the brain and have been implicated in a number of pathological processes underlying neurodegenerative diseases. This review outlines the current understanding of the role of ABC transporters in neurodegenerative diseases, focusing on some of the most important pathways, and also suggests future directions for research in this field.


Epigenomics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 371-380 ◽  
Author(s):  
Andrew M Shafik ◽  
Emily G Allen ◽  
Peng Jin

N6-methyladenosine (m6A) is a dynamic RNA modification that regulates various aspects of RNA metabolism and has been implicated in many biological processes and transitions. m6A is highly abundant in the brain; however, only recently has the role of m6A in brain development been a focus. The machinery that controls m6A is critically important for proper neurodevelopment, and the precise mechanisms by which m6A regulates these processes are starting to emerge. However, the role of m6A in neurodegenerative and neuropsychiatric diseases still requires much elucidation. This review discusses and summarizes the current body of knowledge surrounding the function of the m6A modification in regulating normal brain development, neurodegenerative diseases and outlines possible future directions.


2011 ◽  
Vol 111 (5) ◽  
pp. 1505-1513 ◽  
Author(s):  
Michelle W. Voss ◽  
Lindsay S. Nagamatsu ◽  
Teresa Liu-Ambrose ◽  
Arthur F. Kramer

This is a brief review of current evidence for the relationships between physical activity and exercise and the brain and cognition throughout the life span in non-pathological populations. We focus on the effects of both aerobic and resistance training and provide a brief overview of potential neurobiological mechanisms derived from non-human animal models. Whereas research has focused primarily on the benefits of aerobic exercise in youth and young adult populations, there is growing evidence that both aerobic and resistance training are important for maintaining cognitive and brain health in old age. Finally, in these contexts, we point out gaps in the literature and future directions that will help advance the field of exercise neuroscience, including more studies that explicitly examine the effect of exercise type and intensity on cognition, the brain, and clinically significant outcomes. There is also a need for human neuroimaging studies to adopt a more unified multi-modal framework and for greater interaction between human and animal models of exercise effects on brain and cognition across the life span.


2021 ◽  
Vol 8 (11) ◽  
pp. 148
Author(s):  
Jee Eun Oh ◽  
Cholomi Jung ◽  
Young-sup Yoon

Human induced pluripotent stem cells (hiPSCs) hold great promise for cardiovascular regeneration following ischemic injury. Considerable effort has been made toward the development and optimization of methods to differentiate hiPSCs into vascular cells, such as endothelial and smooth muscle cells (ECs and SMCs). In particular, hiPSC-derived ECs have shown robust potential for promoting neovascularization in animal models of cardiovascular diseases, potentially achieving significant and sustained therapeutic benefits. However, the use of hiPSC-derived SMCs that possess high therapeutic relevance is a relatively new area of investigation, still in the earlier investigational stages. In this review, we first discuss different methodologies to derive vascular cells from hiPSCs with a particular emphasis on the role of key developmental signals. Furthermore, we propose a standardized framework for assessing and defining the EC and SMC identity that might be suitable for inducing tissue repair and regeneration. We then highlight the regenerative effects of hiPSC-derived vascular cells on animal models of myocardial infarction and hindlimb ischemia. Finally, we address several obstacles that need to be overcome to fully implement the use of hiPSC-derived vascular cells for clinical application.


Author(s):  
Bryan T. Denny ◽  
Kevin N. Ochsner

This chapter takes a social cognitive affective neuroscience approach to describe the processes and systems to give rise to emotion and the volitional control of emotion. It provides a detailed description of the processes that underlie the regulation of emotion. It introduces and synthesizes the brain structures involved in emotion processing and regulation. There is a particular focus on the role of the ventrolateral, dorsolateral and dorsomedial prefrtonal cortex, amgydala, ventral striatum and insula, and on cognitive strategies such as reappraisal. It provides a critical framework for understanding the underlying behavioral and neural basis for the affect dysregulation observed across personality disorders, and summarizes future directions for this area of investigation.


2019 ◽  
pp. 85-94
Author(s):  
Navneet Kapur ◽  
Robert Goldney

This chapter discusses the role of pharmacological approaches to the treatment of people who present with suicidal thoughts or behaviours. Use of medication has been controversial, particularly for children. However, the balance of evidence suggests that if there is a psychiatric disorder for which there is an effective pharmacological treatment, then this treatment should be offered. Antidepressants, mood stabilizers (particularly lithium), and antipsychotic medication can reduce suicidality. Ketamine, a short-acting anaesthetic and NMDA receptor antagonist, is potentially useful and is the subject of much research interest for its possible role in treatment.


2020 ◽  
Vol 133 (17) ◽  
pp. jcs231423
Author(s):  
Wim Annaert ◽  
Christoph Kaether

ABSTRACTThe quote “bring it back, bring it back, don't take it away from me” from Queen's Love of my life describes the function of the sorting receptor RER1, a 23 kDa protein with four transmembrane domains (TMDs) that localizes to the intermediate compartment and the cis-Golgi. From there it returns escaped proteins that are not supposed to leave the endoplasmic reticulum (ER) back to it. Unique about RER1 is its ability to recognize its ligands through binding motifs in TMDs. Among its substrates are ER-resident proteins, as well as unassembled subunits of multimeric complexes that are retrieved back into the ER, this way guarding the full assembly of their respective complexes. The basic mechanisms for RER1-dependent retrieval have been already elucidated some years ago in yeast. More recently, several important cargoes of RER1 have been described in mammalian cells, and the in vivo role of RER1 is being unveiled by using mouse models. In this Review, we give an overview of the cell biology of RER1 in different models, discuss its controversial role in the brain and provide an outlook on future directions for RER1 research.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jasleen Kaur ◽  
Lara M. Fahmy ◽  
Esmaeil Davoodi-Bojd ◽  
Li Zhang ◽  
Guangliang Ding ◽  
...  

Waste clearance (WC) is an essential process for brain homeostasis, which is required for the proper and healthy functioning of all cerebrovascular and parenchymal brain cells. This review features our current understanding of brain WC, both within and external to the brain parenchyma. We describe the interplay of the blood-brain barrier (BBB), interstitial fluid (ISF), and perivascular spaces within the brain parenchyma for brain WC directly into the blood and/or cerebrospinal fluid (CSF). We also discuss the relevant role of the CSF and its exit routes in mediating WC. Recent discoveries of the glymphatic system and meningeal lymphatic vessels, and their relevance to brain WC are highlighted. Controversies related to brain WC research and potential future directions are presented.


Sign in / Sign up

Export Citation Format

Share Document