scholarly journals Research of New Machining Method of Skew Bevel Gears Based on Generation Line

2013 ◽  
Vol 9 (S4) ◽  
pp. 20
Author(s):  
Zhaojun Yang ◽  
Baichao Wang ◽  
Yankun Wang ◽  
Yujiang Zhu ◽  
Jing Wang ◽  
...  
Keyword(s):  
2013 ◽  
Vol 273 ◽  
pp. 255-259
Author(s):  
Bai Chao Wang ◽  
Guang Cheng Zhang ◽  
Zhao Jun Yang ◽  
Yan Kun Wang ◽  
Ya Qin Zhang ◽  
...  

Skew bevel gears are fundamental element of transmission system. Processing quality of skew bevel gears has impact on the performance of system. An accurate processing method of tooth surface of skew bevel gears with spherical involute is proposed. According to the space meshing theory, the meshing equation of skew bevel gears is built by the theory of coordinate transform. And the generating principle of generation line of tooth surface about skew bevel gears is studied. In terms of the formation theory of tooth surface, moving process model of milling processing is established. And the generation line is as chord of face circular cutters to cut the tooth surface. Machining of the profile of skew bevel gears is performed using three axes linkage by the method. Finally, the transmission experiment proves that this method can improve dynamics and strength characteristics.


Friction ◽  
2021 ◽  
Author(s):  
Zongzheng Wang ◽  
Wei Pu ◽  
Xin Pei ◽  
Wei Cao

AbstractExisting studies primarily focus on stiffness and damping under full-film lubrication or dry contact conditions. However, most lubricated transmission components operate in the mixed lubrication region, indicating that both the asperity contact and film lubrication exist on the rubbing surfaces. Herein, a novel method is proposed to evaluate the time-varying contact stiffness and damping of spiral bevel gears under transient mixed lubrication conditions. This method is sufficiently robust for addressing any mixed lubrication state regardless of the severity of the asperity contact. Based on this method, the transient mixed contact stiffness and damping of spiral bevel gears are investigated systematically. The results show a significant difference between the transient mixed contact stiffness and damping and the results from Hertz (dry) contact. In addition, the roughness significantly changes the contact stiffness and damping, indicating the importance of film lubrication and asperity contact. The transient mixed contact stiffness and damping change significantly along the meshing path from an engaging-in to an engaging-out point, and both of them are affected by the applied torque and rotational speed. In addition, the middle contact path is recommended because of its comprehensive high stiffness and damping, which maintained the stability of spiral bevel gear transmission.


2010 ◽  
Vol 139-141 ◽  
pp. 1255-1259
Author(s):  
Xiu Ting Wei ◽  
Jing Cheng Liu ◽  
Qiang Du

Combining the machining process simulation on UG NX software and the mathematically analysis, a new solving method for the tooth crest curve equation of spiral bevel gears is proposed in this paper. The steps are as follows:1) Establishing the gear blank cone equation in the original coordinate system; 2) Finding the gear convex and concave profile equations in the new coordinate system; 3) Integrating the original coordinate system and the new one through geometric transformation and then deducing the tooth crest curve equations on both sides. The equations will help calculate the cutter’s position and pose in addendum chamfering process, with the chamfer automation achieved.


Author(s):  
Vilmos V. Simon

In this study an attempt is made to predict displacements and stresses in face-hobbed spiral bevel gears by using the finite element method. A displacement type finite element method is applied with curved, 20-node isoparametric elements. A method is developed for the automatic finite element discretization of the pinion and the gear. The full theory of the generation of tooth surfaces of face-hobbed spiral bevel gears is applied to determine the nodal point coordinates on tooth surfaces. The boundary conditions for the pinion and the gear are set automatically as well. A computer program was developed to implement the formulation provided above. By using this program the influence of design parameters and load position on tooth deflections and fillet stresses is investigated. On the basis of the results, obtained by performing a big number of computer runs, by using regression analysis and interpolation functions, equations for the calculation of tooth deflections and fillet stresses are derived.


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Fangyan Zheng ◽  
Lin Hua ◽  
Xinghui Han ◽  
Dingfang Chen

Noncircular bevel gear is applied to intersecting axes, realizing given function of transmission ratio. Currently, researches are focused mainly on gear with involute tooth profile and straight tooth lengthwise, while that with free-form tooth profile and curvilinear tooth lengthwise are seldom touched upon. Based on screw theory and equal arc-length mapping method, this paper proposes a generally applicable generating method for noncircular bevel gear with free-form tooth profile and curvilinear tooth lengthwise, covering instant screw axis, conjugate pitch surface, as well as the generator with free-form tooth profile and curvilinear tooth lengthwise. Further, the correctness of the proposed method is verified through illustrations of computerized design.


Sign in / Sign up

Export Citation Format

Share Document