Surfactant Concentration for Foam Formation and Propagation in Snorre Reservoir Core

Author(s):  
K. Mannhardt ◽  
I. Svorstøl
Crop Science ◽  
1964 ◽  
Vol 4 (4) ◽  
pp. 391-393 ◽  
Author(s):  
W. A. Kendall
Keyword(s):  

1999 ◽  
Vol 40 (8) ◽  
pp. 229-236 ◽  
Author(s):  
F. Fdz-Polanco ◽  
M. D. Hidalgo ◽  
M. Fdz-Polanco ◽  
P. A. García Encina

In the last decade Polyethylene Terephthalate (PET) production is growing. The wastewater of the “Catalana de Polimers” factory in Barcelona (Spain) has two main streams of similar flow rate, esterification (COD=30,000 mg/l) and textile (COD=4000 mg/l). In order to assess the anaerobic treatment viability, discontinuous and continuous experiments were carried out. Discontinuous biodegradability tests indicated that anaerobic biodegradability was 90 and 75% for esterification and textile wastewater. The textile stream revealed some tendency to foam formation and inhibitory effects. Nutrients, micronutrients and alkali limitations and dosage were determined. A continuous lab-scale UASB reactor was able to treat a mixture of 50% (v) esterification/textile wastewater with stable behaviour at organic loading rate larger than 12 g COD/l.d (0.3 g COD/g VSS.d) with COD removal efficiency greater than 90%. The start-up period was very short and the recuperation after overloading accidents was quite fast, in spite of the wash-out of solids. From the laboratory information an industrial treatment plant was designed and built, during the start-up period COD removal efficiencies larger than 90% and organic loading rate of 0.6 kg COD/kg VSS.d (5 kg COD/m3.d) have been reached.


2020 ◽  
Vol 16 (5) ◽  
pp. 723-733
Author(s):  
Keerthi G.S. Nair ◽  
Yamuna Ravikumar ◽  
Sathesh Kumar Sukumaran ◽  
Ramaiyan Velmurugan

Background: Paclitaxel and spirulina when administered as nanoparticles, are potentially useful. Methods: Nanoformualtions of Paclitaxel and Spirulina for gastric cancer were formulated and optimized with Central composite rotatable design (CCRD) using Response surface methodology (RSM). Results: The significant findings were the optimal formulation of polymer concentration 48 mg, surfactant concentration 45% and stirring time of 60 min gave rise to the EE of (98.12 ± 1.3)%, DL of (15.61 ± 1.9)%, mean diameter of (198 ± 4.7) nm. The release of paclitaxel and spirulina from the nanoparticle matrix at pH 6.2 was almost 45% and 80% in 5 h and 120 h, respectively. The oral bioavailability for the paclitaxel spirulina nanoparticles developed is 24.0% at 10 mg/kg paclitaxel dose, which is 10 times of that for oral pure paclitaxel. The results suggest that RSM-CCRD could efficiently be applied for the modeling of nanoparticles. The paclitaxel and spirulina release rate in the tumor cells may be higher than in normal cells. Paclitaxel spirulina nanoparticle formulation may have higher bioavailability and longer sustainable therapeutic time as compared with pure paclitaxel. Conclusion: Paclitaxel-Spirulina co-loaded nanoparticles could be effectively useful in gastric cancer as chemotherapeutic formulation.


Author(s):  
Karen Cacua ◽  
Fredy Ordoñez ◽  
Camilo Zapata ◽  
Bernardo Herrera ◽  
Elizabeth Pabón ◽  
...  

2020 ◽  
pp. 0021955X2097954
Author(s):  
Pollawat Charoeythornkhajhornchai ◽  
Wutthinun Khamloet ◽  
Pattharawun Nungjumnong

Natural rubber composite foam with carbon such as carbon black (CB), carbon synthesized from durian bark (CDB), graphite (GPT), graphene oxide (GO), graphene (GPE) and multi-walled carbon nanotubes (MWCNT) was studied in this work to investigate the relationship between foam formation during decomposition of chemical blowing agent mechanism and crosslink reaction of rubber molecules by sulphur. Natural rubber composite foam with carbon particle was set at 3 parts per hundred of rubber (phr) to observe the effect of carbon allotropes on foam formation with different microstructure and properties of natural rubber composite foam. The balancing of crosslink reaction by sulphur molecules during foam formation by the decomposition of chemical blowing agent affects the different morphology of natural rubber foam/carbon composites leading to the different mechanical and thermal properties. The result showed the fastest cure characteristics of natural rubber foam with 3 phr of graphene (NRF-GPE3) which was completely cure within 6.55 minutes (tc90) measured by moving die rheometer resulting in the smallest bubble diameter among other formulas. Moreover, natural rubber foam with 3 phr of MWCNT (NRF-MWCNT3) had the highest modulus (0.0035 ± 0.0005 N/m2) due to the small bubble size with high bulk density. In addition, natural rubber foam with 3 phr of GPT (NRF-GPT3) had the highest thermal expansion coefficient (282.12 ± 69 ppm/K) due to high amount of gas bubbles inside natural rubber foam matrix and natural rubber foam with 3 phr of GO (NRF-GO3) displayed the lowest thermal conductivity (0.0798 ± 0.0003 W/m.K) which was lower value than natural rubber foam without carbon filler (NRF). This might be caused by the effect of bubble diameter and bulk density as well as the defect on surface of graphene oxide compared to others carbon filler.


2021 ◽  
Vol 5 (3) ◽  
pp. 37
Author(s):  
Hernán Martinelli ◽  
Claudia Domínguez ◽  
Marcos Fernández Leyes ◽  
Sergio Moya ◽  
Hernán Ritacco

In the search for responsive complexes with potential applications in the formulation of smart dispersed systems such as foams, we hypothesized that a pH-responsive system could be formulated with polyacrylic acid (PAA) mixed with a cationic surfactant, Gemini 12-2-12 (G12). We studied PAA-G12 complexes at liquid–air interfaces by equilibrium and dynamic surface tension, surface rheology, and X-ray reflectometry (XRR). We found that complexes adsorb at the interfaces synergistically, lowering the equilibrium surface tension at surfactant concentrations well below the critical micelle concentration (cmc) of the surfactant. We studied the stability of foams formulated with the complexes as a function of pH. The foams respond reversibly to pH changes: at pH 3.5, they are very stable; at pH > 6, the complexes do not form foams at all. The data presented here demonstrate that foam formation and its pH responsiveness are due to interfacial dynamics.


Author(s):  
Svetlana Rudyk ◽  
Sami Al-Khamisi ◽  
Yahya Al-Wahaibi

AbstractFactors limiting foam injection for EOR application are exceptionally low rock permeability and exceedingly high salinity of the formation water. In this regard, foam formation using internal olefin sulfonate is investigated over a wide salinity range (1, 5, 8, 10, and 12% NaCl) through 10 mD limestone. The relationships between pressure drop (dP), apparent viscosity, liquid flow rate, total flow rate, salinity, foam texture, and length of foam drops at the outlet used as an indicator of viscosity are studied. Foaming is observed up to 12% NaCl, compared to a maximum of 8% NaCl in similar core-flooding experiments with 50 mD limestone and 255 mD sandstone. Thus, the salinity limit of foam formation has increased significantly due to the low permeability, which can be explained by the fact that the narrow porous system acts like a membrane with smaller holes. Compared to the increasing dP reported for highly permeable rocks, dP linearly decreases in almost the entire range of gas fraction (fg) at 1–10% NaCl. As fg increases, dP at higher total flow rate is higher at all salinities, but the magnitude of dP controls the dependence of apparent viscosity on total flow rate. Low dP is measured at 1% and 10% NaCl, and high dP is measured at 5, 8, and 12% NaCl. In the case of low dP, the apparent viscosity is higher at higher total flow rate with increasing gas fraction, but similar at two total flow rates with increasing liquid flow rate. In the case of high dP, the apparent viscosity is higher at lower total flow rate, both with an increase in the gas fraction and with an increase in the liquid flow rate. A linear correlation is found between dP or apparent viscosity and liquid flow rate, which defines it as a governing factor of foam flow and can be considered when modeling foam flow.


Sign in / Sign up

Export Citation Format

Share Document