Modeling of Dimethyl Ether Enhanced Water Flooding in a Heavy Oil Sandstone Reservoir

Author(s):  
G Pelark ◽  
M Chahardowli ◽  
M Simjoo
2020 ◽  
Vol 213 ◽  
pp. 02020
Author(s):  
Fachao Shan ◽  
Lun Zhao ◽  
Anzhu Xu ◽  
Bing Bo ◽  
Gang Ma ◽  
...  

Generally the dynamic methods are used to calculate the oil increase after flooding control in the oilfield, but the evaluation results of different methods are quite different, and the evaluation results are uncertain. Therefore, for flooding control well groups in heavy oil reservoirs, the water flooding characteristic curve method, decline method and net oil increase method are used to calculate the oil increase, and the influence of the method parameter values on the results are analyzed, and the parameter value limits and calculation errors of each method are determined. Based on this, the adaptability of each method is proposed. The results show that the effect evaluation of the whole region flooding control is suitable to use the water flooding characteristic curve method or the decline method, the effect evaluation of the single well group flooding control is more suitable to use the decline method, the net oil increase method is not recommended. The application range and parameter value limit of the effect evaluation method of flooding control are put forward, which can guide the actual production effect evaluation in the oilfield.


2021 ◽  
Vol 888 ◽  
pp. 111-117
Author(s):  
Yi Zhao ◽  
De Yin Zhao ◽  
Rong Qiang Zhong ◽  
Li Rong Yao ◽  
Ke Ke Li

With the continuous exploitation of most reservoirs in China, the proportion of heavy oil reservoirs increases, and the development difficulty is greater than that of conventional reservoirs. In view of the important subject of how to improve the recovery factor of heavy oil reservoir, the thermal recovery technology (hot water flooding, steam flooding, steam assisted gravity drainage SAGD and steam huff and puff) and cold recovery technology (chemical flooding, electromagnetic wave physical flooding and microbial flooding) used in the development of heavy oil reservoir are summarized. The principle of action is analyzed, and the main problems restricting heavy oil recovery are analyzed The main technologies of heavy oil recovery are introduced from the aspects of cold recovery and hot recovery. Based on the study of a large number of literatures, and according to the development trend of heavy oil development, suggestions and prospects for the future development direction are put forward.


SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Desheng Huang ◽  
Ruixue Li ◽  
Daoyong Yang

Summary Phase behavior and physical properties including saturation pressures, swelling factors (SFs), phase volumes, dimethyl ether (DME) partition coefficients, and DME solubility for heavy-oil mixtures containing polar substances have been experimentally and theoretically determined. Experimentally, novel phase behavior experiments of DME/water/heavy-oil mixtures spanning a wide range of pressures and temperatures have been conducted. More specifically, a total of five pressure/volume/temperature (PVT) experiments consisting of two tests of DME/heavy-oil mixtures and three tests of DME/water/heavy-oil mixtures have been performed to measure saturation pressures, phase volumes, and SFs. Theoretically, the modified Peng-Robinson equation of state (EOS) (PR EOS) together with the Huron-Vidal mixing rule, as well as the Péneloux et al. (1982)volume-translation strategy, is adopted to perform phase-equilibrium calculations. The binary-interaction parameter (BIP) between the DME/heavy-oil pair, which is obtained by matching the measured saturation pressures of DME/heavy-oil mixtures, works well for DME/heavy-oil mixtures in the presence and absence of water. The new model developed in this work is capable of accurately reproducing the experimentally measured multiphase boundaries, phase volumes, and SFs for the aforementioned mixtures with the root-mean-squared relative error (RMSRE) of 3.92, 9.40, and 0.92%, respectively, while it can also be used to determine DME partition coefficients and DME solubility for DME/water/heavy-oil systems.


2019 ◽  
Vol 177 ◽  
pp. 798-807 ◽  
Author(s):  
Shishi Pang ◽  
Wanfen Pu ◽  
Jianyong Xie ◽  
Yanjie Chu ◽  
Chongyang Wang ◽  
...  

Fuel ◽  
2015 ◽  
Vol 153 ◽  
pp. 559-568 ◽  
Author(s):  
David W. Zhao ◽  
Ian D. Gates

2018 ◽  
Vol 38 ◽  
pp. 01054
Author(s):  
Guan Wang ◽  
Rui Wang ◽  
Yaxiu Fu ◽  
Lisha Duan ◽  
Xizhi Yuan ◽  
...  

Mengulin sandstone reservoir in Huabei oilfield is low- temperature heavy oil reservoir. Recently, it is at later stage of waterflooding development. The producing degree of water flooding is poor, and it is difficult to keep yield stable. To improve oilfield development effect, according to the characteristics of reservoir geology, microbial enhanced oil recovery to improve oil displacement efficiency is researched. 2 microbial strains suitable for the reservoir conditions were screened indoor. The growth characteristics of strains, compatibility and function mechanism with crude oil were studied. Results show that the screened strains have very strong ability to utilize petroleum hydrocarbon to grow and metabolize, can achieve the purpose of reducing oil viscosity, and can also produce biological molecules with high surface activity to reduce the oil-water interfacial tension. 9 oil wells had been chosen to carry on the pilot test of microbial stimulation, of which 7 wells became effective with better experiment results. The measures effective rate is 77.8%, the increased oil is 1,093.5 tons and the valid is up to 190 days.


2017 ◽  
Vol 119 (1) ◽  
pp. 57-75
Author(s):  
Pavel Z. S. Paz ◽  
Thomas H. Hollmann ◽  
Efe Kermen ◽  
Grigori Chapiro ◽  
Evert Slob ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document