scholarly journals Total synthesis of biologically active lipoteichoic acids

ARKIVOC ◽  
2012 ◽  
Vol 2013 (2) ◽  
pp. 249-275
Author(s):  
Christian Marcus Pedersen ◽  
Mikael Bols ◽  
Yan Qiao
ChemInform ◽  
2013 ◽  
Vol 44 (16) ◽  
pp. no-no
Author(s):  
Christian Marcus Pedersen ◽  
Mikael Bols ◽  
Yan Qiao

1991 ◽  
Vol 11 (7) ◽  
pp. 3603-3612
Author(s):  
S Marcus ◽  
G A Caldwell ◽  
D Miller ◽  
C B Xue ◽  
F Naider ◽  
...  

We have undertaken total synthesis of the Saccharomyces cerevisiae a-factor (NH2-YIIKGVFWDPAC[S-farnesyl]-COOCH3) and several Cys-12 analogs to determine the significance of S-farnesylation and carboxy-terminal methyl esterification to the biological activity of this lipopeptide mating pheromone. Replacement of either the farnesyl group or the carboxy-terminal methyl ester by a hydrogen atom resulted in marked reduction but not total loss of bioactivity as measured by a variety of assays. Moreover, both the farnesyl and methyl ester groups could be replaced by other substituents to produce biologically active analogs. The bioactivity of a-factor decreased as the number of prenyl units on the cysteine sulfur decreased from three to one, and an a-factor analog having the S-farnesyl group replaced by an S-hexadecanyl group was more active than an S-methyl a-factor analog. Thus, with two types of modifications, a-factor activity increased as the S-alkyl group became bulkier and more hydrophobic. MATa cells having deletions of the a-factor structural genes (mfal1 mfa2 mutants) were capable of mating with either sst2 or wild-type MAT alpha cells in the presence of exogenous a-factor, indicating that it is not absolutely essential for MATa cells to actively produce a-factor in order to mate. Various a-factor analogs were found to partially restore mating to these strains as well, and their relative activities in the mating restoration assay were similar to their activities in the other assays used in this study. Mating was not restored by addition of exogenous a-factor to a cross of a wild-type MAT alpha strain and a MATaste6 mutant, indicating a role of the STE6 gene product in mating in addition to its secretion of a-factor.


1991 ◽  
Vol 11 (7) ◽  
pp. 3603-3612 ◽  
Author(s):  
S Marcus ◽  
G A Caldwell ◽  
D Miller ◽  
C B Xue ◽  
F Naider ◽  
...  

We have undertaken total synthesis of the Saccharomyces cerevisiae a-factor (NH2-YIIKGVFWDPAC[S-farnesyl]-COOCH3) and several Cys-12 analogs to determine the significance of S-farnesylation and carboxy-terminal methyl esterification to the biological activity of this lipopeptide mating pheromone. Replacement of either the farnesyl group or the carboxy-terminal methyl ester by a hydrogen atom resulted in marked reduction but not total loss of bioactivity as measured by a variety of assays. Moreover, both the farnesyl and methyl ester groups could be replaced by other substituents to produce biologically active analogs. The bioactivity of a-factor decreased as the number of prenyl units on the cysteine sulfur decreased from three to one, and an a-factor analog having the S-farnesyl group replaced by an S-hexadecanyl group was more active than an S-methyl a-factor analog. Thus, with two types of modifications, a-factor activity increased as the S-alkyl group became bulkier and more hydrophobic. MATa cells having deletions of the a-factor structural genes (mfal1 mfa2 mutants) were capable of mating with either sst2 or wild-type MAT alpha cells in the presence of exogenous a-factor, indicating that it is not absolutely essential for MATa cells to actively produce a-factor in order to mate. Various a-factor analogs were found to partially restore mating to these strains as well, and their relative activities in the mating restoration assay were similar to their activities in the other assays used in this study. Mating was not restored by addition of exogenous a-factor to a cross of a wild-type MAT alpha strain and a MATaste6 mutant, indicating a role of the STE6 gene product in mating in addition to its secretion of a-factor.


2007 ◽  
Vol 79 (2) ◽  
pp. 163-172 ◽  
Author(s):  
Luiz C. Dias ◽  
Luciana G. de Oliveira ◽  
Paulo R. R. Meira

This paper describes the convergent and stereocontrolled asymmetric total synthesis of (+)-crocacins C and D, potent inhibitors of animal cell cultures and several yeasts and fungi, and (-)-callystatin A, a potent antitumor polyketide.


Synlett ◽  
2018 ◽  
Vol 29 (12) ◽  
pp. 1552-1571 ◽  
Author(s):  
Jianxian Gong ◽  
Zhen Yang ◽  
Yueqing Gu ◽  
Ceheng Tan

This account describes our group’s latest research in the field of diversity-oriented synthesis of natural products via gold-catalyzed cascade reactions. We present two general strategies based on gold-catalyzed cycloisomerization: a gold-catalyzed cascade reaction of 1,7-diynes and a pinacol-terminated gold-catalyzed cascade reaction. We highlight our development of synthetic methods for the construction of biologically active natural products by using these two strategies.1 Introduction2 Gold-Catalyzed Cascade Reactions of 1,7-Diynes2.1 Collective Synthesis of C15 Oxygenated Drimane-Type Sesquiterpenoids2.2 Synthesis of Left-Wing Fragment of Azadirachtin I2.3 Collective Synthesis of Cladiellins3 Pinacol-Terminated Gold-Catalyzed Cascade Reaction3.1 Asymmetric Formal Total Synthesis of (+)-Cortistatins3.2 Total Synthesis of Orientalol F3.3 Asymmetric Total Synthesis of (–)-Farnesiferol C4 Summary and Outlook


2005 ◽  
Vol 77 (12) ◽  
pp. 2091-2098 ◽  
Author(s):  
Marian Mikołajczyk

This account outlines the results obtained in the author's laboratory on the asymmetric cyclopropanation of enantiopure 1-phosphorylvinyl p-tolyl sulfoxides with sulfur ylides and diazoalkanes. Based on experimental results and theoretical calculations, the transition-state model for asymmetric cyclopropanation is proposed. A great synthetic value of the reaction investigated is exemplified by the total synthesis of constrained analogs of bioactive compounds, namely, enantiopure cyclic analog of phaclofen and cyclopropylphosphonate analogs of nucleotides.


1990 ◽  
Vol 121 (11) ◽  
pp. 931-939 ◽  
Author(s):  
Djordje Vlaović ◽  
Gordana Ćetković ◽  
Ivan Juranić ◽  
Jelica Balaž ◽  
Stevan Lajšić ◽  
...  

2011 ◽  
Vol 84 (6) ◽  
pp. 1379-1390 ◽  
Author(s):  
Michael C. McLeod ◽  
Margaret A. Brimble ◽  
Dominea C. K. Rathwell ◽  
Zoe E. Wilson ◽  
Tsz-Ying Yuen

Studies toward the synthesis of three biologically active [5,6]-benzannulated spiroketal natural products are described. The first total synthesis of paecilospirone is reported, employing a late-stage, pH-neutral spiroketalization. A formal synthesis of γ-rubromycin is described, where the spiroketal moiety is formed by delicate manipulation of the electronic properties of the spirocyclization precursor. Finally, model work toward the total synthesis of berkelic acid is summarized, introducing a novel Horner–Wadsworth–Emmons/oxa-Michael (HWE/oxa-M) cascade to access the spiroketal precursor.


Sign in / Sign up

Export Citation Format

Share Document