scholarly journals Microtensile bond strength of fiber-reinforced composite with semi-interpenetrating polymer matrix to dentin using various bonding systems

2008 ◽  
Vol 27 (6) ◽  
pp. 821-826 ◽  
Author(s):  
Arzu TEZVERGIL-MUTLUAY ◽  
Lippo V.J. LASSILA ◽  
Pekka K. VALLITTU
2013 ◽  
Vol 7 (1) ◽  
pp. 126-131 ◽  
Author(s):  
Timo T. Kallio ◽  
Arzu Tezvergil-Mutluay ◽  
Lippo V.J. Lassila ◽  
Pekka K. Vallittu

Objective: The purpose of this study was to analyze the shear bond strength of a new composite resin to polymer-based composite substrates using various surface roughnesses and two kinds of polymer matrices. Materials and methods: Particulate filler composite resin with cross-linked polymer matrix and fiber-reinforced composite with semi-interpenetrating polymer matrix were used as bonding substrates after being ground to different roughnesses. Substrates were aged in water for one week before bonding to new resin composites. Twelve specimens in the substrate groups were ground with grinding papers of four grits; 320, 800, 1200 and 2400. Results: Corresponding values of surface roughness (Ra) varied from 0.09 to 0.40 for the particulate filler composite resin and 0.07 to 0.96 for the fiber-reinforced composite resin. Characteristic shear bond strength between the new resin and particulate filler composite resin was highest (27.8 MPa) with the roughest surface (Weibull modulus: 2.085). Fiber-reinforced composite showed the highest bond strength (20.8 MPa) with the smoothest surface (Weibull modulus: 4.713). Conclusions: We concluded that surface roughness did not increase the bonding of new resin to the substrate of IPN based fiber-reinforced composite, whereas the roughness contributed to bonding the new resin to the particulate filler composite resin with a cross-linked polymer matrix.


2018 ◽  
Vol 34 (11) ◽  
pp. 1690-1701 ◽  
Author(s):  
Lucas Fracassi de Oliveira Lino ◽  
Camila Moreira Machado ◽  
Vitor Guarçoni de Paula ◽  
Hugo Alberto Vidotti ◽  
Paulo G. Coelho ◽  
...  

2014 ◽  
Vol 81 (9) ◽  
Author(s):  
S. I. Kundalwal ◽  
M. C. Ray ◽  
S. A. Meguid

In this article, we investigate the stress transfer characteristics of a novel hybrid hierarchical nanocomposite in which the regularly staggered short fuzzy fibers are interlaced in the polymer matrix. The advanced fiber augmented with carbon nanotubes (CNTs) on its circumferential surface is known as “fuzzy fiber.” A three-phase shear lag model is developed to analyze the stress transfer characteristics of the short fuzzy fiber reinforced composite (SFFRC) incorporating the staggering effect of the adjacent representative volume elements (RVEs). The effect of the variation of the axial and lateral spacing between the adjacent staggered RVEs in the polymer matrix on the load transfer characteristics of the SFFRC is investigated. The present shear lag model also accounts for the application of the radial loads on the RVE and the radial as well as the axial deformations of the different orthotropic constituent phases of the SFFRC. Our study reveals that the existence of the non-negligible shear tractions along the length of the RVE of the SFFRC plays a significant role in the stress transfer characteristics and cannot be neglected. Reductions in the maximum values of the axial stress in the carbon fiber and the interfacial shear stress along its length become more pronounced in the presence of the externally applied radial loads on the RVE. The results from the newly developed analytical shear lag model are validated with the finite element (FE) shear lag simulations and found to be in good agreement.


10.2341/07-86 ◽  
2008 ◽  
Vol 33 (3) ◽  
pp. 346-355 ◽  
Author(s):  
F. Monticelli ◽  
R. Osorio ◽  
F. T. Sadek ◽  
I. Radovic ◽  
M. Toledano ◽  
...  

Clinical Relevance Several surface treatments have been proposed for improving the bonding of resin cements or core materials to FRC (fiber-reinforced composite) posts. The possibility of combining chemical and micromechanical retention on post surface provides the most promising adhesion mechanism.


Sign in / Sign up

Export Citation Format

Share Document