COMPARISON OF PLGA, PCL, AND CHITOSAN IN SALIVARY GLAND BRANCHING MORPHOGENESIS

2008 ◽  
Vol 20 (05) ◽  
pp. 287-296 ◽  
Author(s):  
Tsung-Lin Yang ◽  
Ya-Chuan Hsiao ◽  
Tai-Horng Young

Branching morphogenesis is a fundamental morphogenetic process in generating glandular tissues. Although the mechanism of branching morphogenesis has been well-explored in the salivary gland development, its interaction with different biodegradable materials has never been investigated. For the purpose of salivary gland regeneration, recapitulation of morphogenetic processes on biodegradable materials might be requisite. Toward this aim, biodegradable biomaterials including poly-lactic-co-glycolic acid (PLGA), poly-epsilon-caprolactone (PCL), and chitosan were examined in the submandibular gland (SMG) culture systems to elucidate their possible impact on salivary morphogenesis. It was found that when SMG explants were cultured on PLGA and PCL, the explants failed to form well-developed branching phenotypes with limited cell migration (5.6 ± 8.8 μm; 10.0 ± 14.1 μm) and decreasing cell viability (56.9% ± 12.5%; 50.3% ± 8.1%). On the contrary, explants cultured on chitosan showed well-developed branches, which were superior in number to those on the control substrata, without any alteration of the morphogenetic phenotypes. Furthermore, the increased cell migration (267.8 ± 45.2 μm) and explants viability (146.8% ± 18.4%) along with the greater deposition of type III collagen, altogether account for better SMG morphogenesis on chitosan. According to the results, it was found that branching morphogenesis of SMG was affected by different biodegradable materials. Chitosan might be an appropriate biodegradable material for salivary morphogenesis, and has applicable potential in the regeneration of salivary tissue.

Development ◽  
1981 ◽  
Vol 66 (1) ◽  
pp. 209-221
Author(s):  
Hiroyuki Nogawa ◽  
Takeo Mizuno

Recombination of the epithelium and mesenchyme between quail anterior submaxillary gland (elongating type) and quail anterior lingual or mouse submaxillary gland (branching type) was effected in vitro to clarify whether the elongating morphogenesis was directed by the epithelial or the mesenchymal component. Quail anterior submaxillary epithelium recombined with quail anterior lingual or mouse submaxillary mesenchyme came to branch. Conversely, quail anterior lingual or 12-day mouse submaxillary epithelium recombined with quail anterior submaxillary mesenchyme came to elongate, though the mesenchyme was less effective with 13-day mouse submaxillary epithelium. These results suggest that the elongating or branching morphogenesis of quail salivary glands is controlled by the mesenchyme.


2019 ◽  
Vol 98 (10) ◽  
pp. 1122-1130 ◽  
Author(s):  
T.H.N. Teshima ◽  
A.S. Tucker ◽  
S.V. Lourenço

Neuronal signaling is known to be required for salivary gland development, with parasympathetic nerves interacting with the surrounding tissues from early stages to maintain a progenitor cell population and control morphogenesis. In contrast, postganglionic sympathetic nerves arrive late in salivary gland development to perform a secretory function; however, no previous report has shown their role during development. Here, we show that a subset of neuronal cells within the parasympathetic submandibular ganglion (PSG) express the catecholaminergic marker tyrosine hydroxylase (TH) in developing murine and human submandibular glands. This sympathetic phenotype coincided with the expression of transcription factor Hand2 within the PSG from the bud stage (E12.5) of mouse embryonic salivary gland development. Hand2 was previously associated with the decision of neural crest cells to become sympathetic in other systems, suggesting a role in controlling neuronal fate in the salivary gland. The PSG therefore provides a population of TH-expressing neurons prior to the arrival of the postganglionic sympathetic axons from the superior cervical ganglion at E15.5. In culture, in the absence of nerves from the superior cervical ganglion, these PSG-derived TH neurons were clearly evident forming a network around the gland. Chemical ablation of dopamine receptors in explant culture with the neurotoxin 6-hydroxydopamine at early stages of gland development resulted in specific loss of the TH-positive neurons from the PSG, and subsequent branching was inhibited. Taken altogether, these results highlight for the first time the detailed developmental time course of TH-expressing neurons during murine salivary gland development and suggest a role for these neurons in branching morphogenesis.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Kenji Okumura ◽  
Masanori Shinohara ◽  
Fumio Endo

Branching morphogenesis (BrM), an essential step for salivary gland development, requires epithelial-mesenchymal interactions. BrM is impaired when the surrounding mesenchyme is detached from the salivary epithelium during the pseudoglandular stage. It is believed that the salivary mesenchyme is indispensable for BrM, however, an extracellular matrix gel with exogenous EGF can be used as a substitute for the mesenchyme during BrM in the developing salivary epithelium. Stem/progenitor cells isolated from salivary glands in humans and rodents can be classified as mesenchymal stem cell-like, bone-marrow-derived, duct cell-like, and embryonic epithelium-like cells. Salivary-gland-derived progenitor (SGP) cells isolated from duct-ligated rats, mice, and swine submandibular glands share similar characteristics, including intracellular laminin andα6β1-integrin expression, similar to the embryonic salivary epithelia during the pseudoglandular stage. Progenitor cells also isolated from human salivary glands (human SGP cells) having the same characteristics differentiate into hepatocyte-like cells when transplanted into the liver. Similar to the dissociated embryonic salivary epithelium, human SGP cells aggregate to self-organize into branching organ-like structures on Matrigel plus exogenous EGF. These results suggest the possibility that tissue stem cells organize rudiment-like structures, and the embryonic cells that organize into whole tissues during development are preserved even in adult tissues.


2021 ◽  
Vol 22 (6) ◽  
pp. 3162
Author(s):  
Erni Sulistiyani ◽  
James M. Brimson ◽  
Ajjima Chansaenroj ◽  
Ladawan Sariya ◽  
Ganokon Urkasemsin ◽  
...  

Antioxidant agents are promising pharmaceuticals to prevent salivary gland (SG) epithelial injury from radiotherapy and their associated irreversible dry mouth symptoms. Epigallocatechin-3-gallate (EGCG) is a well-known antioxidant that can exert growth or inhibitory biological effects in normal or pathological tissues leading to disease prevention. The effects of EGCG in the various SG epithelial compartments are poorly understood during homeostasis and upon radiation (IR) injury. This study aims to: (1) determine whether EGCG can support epithelial proliferation during homeostasis; and (2) investigate what epithelial cells are protected by EGCG from IR injury. Ex vivo mouse SG were treated with EGCG from 7.5–30 µg/mL for up to 72 h. Next, SG epithelial branching morphogenesis was evaluated by bright-field microscopy, immunofluorescence, and gene expression arrays. To establish IR injury models, linear accelerator (LINAC) technologies were utilized, and radiation doses optimized. EGCG epithelial effects in these injury models were assessed using light, confocal and electron microscopy, the Griess assay, immunohistochemistry, and gene arrays. SG pretreated with EGCG 7.5 µg/mL promoted epithelial proliferation and the development of pro-acinar buds and ducts in regular homeostasis. Furthermore, EGCG increased the populations of epithelial progenitors in buds and ducts and pro-acinar cells, most probably due to its observed antioxidant activity after IR injury, which prevented epithelial apoptosis. Future studies will assess the potential for nanocarriers to increase the oral bioavailability of EGCG.


1989 ◽  
Vol 35 (4) ◽  
pp. 313-320 ◽  
Author(s):  
Kent S. Shelby ◽  
Katherine M. Kocan ◽  
John A. Bantle ◽  
John R. Sauer

EvoDevo ◽  
2013 ◽  
Vol 4 (1) ◽  
pp. 9 ◽  
Author(s):  
Chilinh Nguyen ◽  
Emily Andrews ◽  
Christy Le ◽  
Longhua Sun ◽  
Zeinab Annan ◽  
...  

2014 ◽  
Vol 25-26 ◽  
pp. 52-60 ◽  
Author(s):  
Vaishali N. Patel ◽  
Matthew P. Hoffman

Development ◽  
2000 ◽  
Vol 127 (12) ◽  
pp. 2563-2572 ◽  
Author(s):  
H.P. Makarenkova ◽  
M. Ito ◽  
V. Govindarajan ◽  
S.C. Faber ◽  
L. Sun ◽  
...  

We investigated the mechanism of tissue induction and specification using the lacrimal gland as a model system. This structure begins its morphogenesis as a bud-like outgrowth of the conjunctival epithelium and ultimately forms a branched structure with secretory function. Using a reporter transgene as a specific marker for gland epithelium, we show that the transcription factor Pax6 is required for normal development of the gland and is probably an important competence factor. In investigating the cell-cell signaling required, we show that fibroblast growth factor (FGF) 10 is sufficient to stimulate ectopic lacrimal bud formation in ocular explants. Expression of FGF10 in the mesenchyme adjacent to the presumptive lacrimal bud and absence of lacrimal gland development in FGF10-null mice strongly suggest that it is an endogenous inducer. This was supported by the observation that inhibition of signaling by a receptor for FGF10 (receptor 2 IIIb) suppressed development of the endogenous lacrimal bud. In explants of mesenchyme-free gland epithelium, FGF10 stimulated growth but not branching morphogenesis. This suggested that its role in induction is to stimulate proliferation and, in turn, that FGF10 combines with other factors to provide the instructive signals required for lacrimal gland development.


2018 ◽  
Vol 60 (4) ◽  
pp. 83-86 ◽  
Author(s):  
Takayoshi Sakai ◽  
Hitomi Ono Minagi ◽  
Aya Obana-Koshino ◽  
Manabu Sakai

Sign in / Sign up

Export Citation Format

Share Document