Nanomechanical Characterization of Cement-Based Materials

Author(s):  
Salim Barbhuiya

Nanoindentation technique is used to assess the mechanical properties of materials at nano-level. A very small tip (usually diamond) produces indents at the surface of the material to be tested. A load vs. deflection curve is generated and is used to study the elastic properties of materials. Generally, it is used for obtaining the hardness and Young's modulus of materials at nano-meter scale. Currently, the method to evaluate the mechanical properties by nanoindentation is restricted to homogeneous materials. Cement-based materials are heterogeneous in nature. Therefore, nanoindentation study of cement-based materials is critical and requires several important steps, which need to be performed accurately. This chapter provides a review of the theory of nanoindentation, instruments being used for nanoindentation, sample preparation techniques, indentation strategy, and determination of nanomechanical properties and data analysis for cement-based materials.

Ultrasonics ◽  
2016 ◽  
Vol 64 ◽  
pp. 186-195 ◽  
Author(s):  
Megha Agrawal ◽  
Abhinav Prasad ◽  
Jayesh R. Bellare ◽  
Ashwin A. Seshia

2012 ◽  
Vol 79 (6) ◽  
Author(s):  
Huiyang Fei ◽  
Amit Abraham ◽  
Nikhilesh Chawla ◽  
Hanqing Jiang

The micro-pillar compression test is emerging as a novel way to measure the mechanical properties of materials. In this paper, we systematically conducted finite element analysis to evaluate the capability of using a micro-compression test to probe the mechanical properties of both elastic and plastic materials. We found that this test can provide an alternative way to accurately and robustly measure strain, and to some extent, stress. Therefore, this test can be used to measure some strain related quantities, such as strain to failure, or the stress-strain relations for plastic materials.


Author(s):  
Suzanne Ferreri ◽  
Bing Hu ◽  
Yi-Xian Qin

Evaluation of bone’s response to mechanical loading is of critical importance in studies addressing the overall efficacy of therapeutic interventions. Moreover, thorough characterization of bone’s response to applied loads should reflect the contributions of both bone mineral (elastic properties) and collagen (viscoelastic properties).


Foods ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 58 ◽  
Author(s):  
Konstantina Ntrallou ◽  
Helen Gika ◽  
Emmanouil Tsochatzis

Color additives are widely used by the food industry to enhance the appearance, as well as the nutritional properties of a food product. However, some of these substances may pose a potential risk to human health, especially if they are consumed excessively and are regulated, giving great importance to their determination. Several matrix-dependent methods have been developed and applied to determine food colorants, by employing different analytical techniques along with appropriate sample preparation protocols. Major techniques applied for their determination are chromatography with spectophotometricdetectors and spectrophotometry, while sample preparation procedures greatly depend on the food matrix. In this review these methods are presented, covering the advancements of existing methodologies applied over the last decade.


Sign in / Sign up

Export Citation Format

Share Document