Predictive Analytics for Business Processes in Service Management

Author(s):  
Yurdaer N. Doganata ◽  
Geetika T. Lakshmanan ◽  
Merve Unuvar

Underlying business processes in service management are people intensive and collaborative by nature. We are observing an emerging trend in the service management applications, moving away from rigid process orchestration to leveraging collaboration. Such solutions allow staffers to define their own customized, ad-hoc step flow consisting of the sequence of the activities necessary to handle a service component. These ad-hoc steps introduce uncertainty to the successful completion of a service request. When there is uncertainty, predictive guidance about future outcomes could provide value to the workers handling a time-sensitive service delivery component. Predicting the future outcomes using machine-learning techniques requires effective representation of the process execution traces. This is challenging when process model includes parallel execution flows or repeated executions of some activities. In this chapter, we describe algorithms for training machine learning models when the execution paths include parallel flows and when some activities are repeatedly executed.

2021 ◽  
Author(s):  
Serkan Varol ◽  
Serkan Catma ◽  
Diana Reindl ◽  
Elizabeth Serieux

BACKGROUND Vaccine refusal still poses a risk to reaching herd immunity in the United States. The existing literature focuses on identifying the predictors that would impact the willingness to accept (WTA) vaccines using survey data. These variables range from the socio-demographic characteristics of the participants to the perceptions and attitudes towards the vaccines so each variable’s statistical relationship with the WTA a vaccine can be investigated. However, while the results of these studies may have important implications for understanding vaccine hesitancy by offering interpretation of the statistical relationships, the prediction of vaccine decision-making has rarely been investigated OBJECTIVE We aimed to identify the factors that contribute to the prediction of COVID-19 vaccine acceptors and refusers using machine learning METHODS A nationwide survey was administered online in November, 2020 to assess American public perceptions and attitudes towards COVID-19 vaccines. Seven machine learning techniques were utilized to identify the model with the highest predictive power. Moreover, a set of variables that would contribute the most to the predictions of vaccine acceptors and refusers was identified using Gini importance based on Random Forest structure RESULTS The resulting machine learning algorithm has better prediction ability for willingness to accept (82%) versus reject (51%) a COVID-19 vaccine. In terms of predictive success, the Random Forest model outperformed the other machine learning techniques with a 69.52% accuracy rate. Worrying about (re) contracting Covid 19 and opinions regarding mandatory face covering were identified as the most important predictors of vaccine decision-making CONCLUSIONS The complexity of vaccine hesitancy needs to be investigated thoroughly before the threshold needed to reach population immunity can be achieved. Predictive analytics can help the public health officials design and deliver individually tailored vaccination programs that would increase the overall vaccine uptake.


2020 ◽  
Vol 32 (1) ◽  
pp. 39-53
Author(s):  
Dalia Shanshal ◽  
Ceni Babaoglu ◽  
Ayşe Başar

Traffic-related deaths and severe injuries may affect every person on the roads, whether driving, cycling or walking. Toronto, the largest city in Canada and the fourth largest in North America, aims to eliminate traffic-related fatalities and serious injuries on city streets. The aim of this study is to build a prediction model using data analytics and machine learning techniques that learn from past patterns, providing additional data-driven decision support for strategic planning. A detailed exploratory analysis is presented, investigating the relationship between the variables and factors affecting collisions in Toronto. A learning-based model is proposed to predict the fatalities and severe injuries in traffic collisions through a comparison of two predictive models: Lasso Regression and Random Forest. Exploratory data analysis results reveal both spatio-temporal and behavioural patterns such as the prevalence of collisions in intersections, in the spring and summer and aggressive driving and inattentive behaviours in drivers. The prediction results show that the best predictor of injury severity for drivers, cyclists and pedestrians is Random Forest with an accuracy of 0.80, 0.89, and 0.80, respectively. The proposed methods demonstrate the effectiveness of machine learning application to traffic and collision data, both for exploratory and predictive analytics.


Author(s):  
Anurag Yedla ◽  
Fatemeh Davoudi Kakhki ◽  
Ali Jannesari

Mining is known to be one of the most hazardous occupations in the world. Many serious accidents have occurred worldwide over the years in mining. Although there have been efforts to create a safer work environment for miners, the number of accidents occurring at the mining sites is still significant. Machine learning techniques and predictive analytics are becoming one of the leading resources to create safer work environments in the manufacturing and construction industries. These techniques are leveraged to generate actionable insights to improve decision-making. A large amount of mining safety-related data are available, and machine learning algorithms can be used to analyze the data. The use of machine learning techniques can significantly benefit the mining industry. Decision tree, random forest, and artificial neural networks were implemented to analyze the outcomes of mining accidents. These machine learning models were also used to predict days away from work. An accidents dataset provided by the Mine Safety and Health Administration was used to train the models. The models were trained separately on tabular data and narratives. The use of a synthetic data augmentation technique using word embedding was also investigated to tackle the data imbalance problem. Performance of all the models was compared with the performance of the traditional logistic regression model. The results show that models trained on narratives performed better than the models trained on structured/tabular data in predicting the outcome of the accident. The higher predictive power of the models trained on narratives led to the conclusion that the narratives have additional information relevant to the outcome of injury compared to the tabular entries. The models trained on tabular data had a lower mean squared error compared to the models trained on narratives while predicting the days away from work. The results highlight the importance of predictors, like shift start time, accident time, and mining experience in predicting the days away from work. It was found that the F1 score of all the underrepresented classes except one improved after the use of the data augmentation technique. This approach gave greater insight into the factors influencing the outcome of the accident and days away from work.


Author(s):  
SANDA M. HARABAGIU

This paper presents a novel methodology of disambiguating prepositional phrase attachments. We create patterns of attachments by classifying a collection of prepositional relations derived from Treebank parses. As a by-product, the arguments of every prepositional relation are semantically disambiguated. Attachment decisions are generated as the result of a learning process, that builds upon some of the most popular current statistical and machine learning techniques. We have tested this methodology on (1) Wall Street Journal articles, (2) textual definitions of concepts from a dictionary and (3) an ad hoc corpus of Web documents, used for conceptual indexing and information extraction.


Predictive analysis comprises a vast variety of statistical techniques like “machine learning”, “predictive modelling” and “data mining” and uses current and historical statistics to predict future outcomes. It is used in both business and educational domain with equal applicability.This paper aims to give an overview of the top work done so far in this field. We have briefed on classical as well as latest approaches (using“machine learning”) in predictive analysis. Main aspects like feature selection and algorithm selection along with corresponding application is explained. Some of the most quoted papers in this field along with their objectives are listed in a table. This paper can give a good heads up to whoever wants to know and use predictive analysis for his academic or business application.


Author(s):  
Helper Zhou ◽  
Victor Gumbo

The emergence of machine learning algorithms presents the opportunity for a variety of stakeholders to perform advanced predictive analytics and to make informed decisions. However, to date there have been few studies in developing countries that evaluate the performance of such algorithms—with the result that pertinent stakeholders lack an informed basis for selecting appropriate techniques for modelling tasks. This study aims to address this gap by evaluating the performance of three machine learning techniques: ordinary least squares (OLS), least absolute shrinkage and selection operator (LASSO), and artificial neural networks (ANNs). These techniques are evaluated in respect of their ability to perform predictive modelling of the sales performance of small, medium and micro enterprises (SMMEs) engaged in manufacturing. The evaluation finds that the ANNs algorithm’s performance is far superior to that of the other two techniques, OLS and LASSO, in predicting the SMMEs’ sales performance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maulin Raval ◽  
Pavithra Sivashanmugam ◽  
Vu Pham ◽  
Hardik Gohel ◽  
Ajeet Kaushik ◽  
...  

AbstractAustralia faces a dryness disaster whose impact may be mitigated by rainfall prediction. Being an incredibly challenging task, yet accurate prediction of rainfall plays an enormous role in policy making, decision making and organizing sustainable water resource systems. The ability to accurately predict rainfall patterns empowers civilizations. Though short-term rainfall predictions are provided by meteorological systems, long-term prediction of rainfall is challenging and has a lot of factors that lead to uncertainty. Historically, various researchers have experimented with several machine learning techniques in rainfall prediction with given weather conditions. However, in places like Australia where the climate is variable, finding the best method to model the complex rainfall process is a major challenge. The aim of this paper is to: (a) predict rainfall using machine learning algorithms and comparing the performance of different models. (b) Develop an optimized neural network and develop a prediction model using the neural network (c) to do a comparative study of new and existing prediction techniques using Australian rainfall data. In this paper, rainfall data collected over a span of ten years from 2007 to 2017, with the input from 26 geographically diverse locations have been used to develop the predictive models. The data was divided into training and testing sets for validation purposes. The results show that both traditional and neural network-based machine learning models can predict rainfall with more precision.


Sign in / Sign up

Export Citation Format

Share Document