Processing Technologies for Green Composites Production

Author(s):  
Deepak Verma ◽  
Garvit Joshi ◽  
Rajneesh Dabral

Green composites became a most important and adaptable theme of research. This area/theme not only harness the agricultural wastes such as bagasse fibres, banana fibres, etc. but also provides a new material manufactured from these wastes which are reduced weight, have low cost, and have high mechanical strength. Currently, there are various methods available for the processing or fabrication of green composites. Some of these methods are hand layup method, injection molding method, spray-up method, compression molding, Resin-Transfer Molding (RTM), etc. In this chapter, we are discussing about the fabrication method of green composite and their important parameters. Various properties and characterization of composite materials made by these methods have also been discussed and reported here.

Author(s):  
Deepak Verma ◽  
Garvit Joshi ◽  
Rajneesh Dabral

Green composites became a most important and adaptable theme of research. This area/theme not only harness the agricultural wastes such as bagasse fibres, banana fibres, etc. but also provides a new material manufactured from these wastes which are reduced weight, have low cost, and have high mechanical strength. Currently, there are various methods available for the processing or fabrication of green composites. Some of these methods are hand layup method, injection molding method, spray-up method, compression molding, Resin-Transfer Molding (RTM), etc. In this chapter, we are discussing about the fabrication method of green composite and their important parameters. Various properties and characterization of composite materials made by these methods have also been discussed and reported here.


2011 ◽  
Vol 687 ◽  
pp. 591-595
Author(s):  
Qun Jiao Wang ◽  
Min Xu

Combinatorial technology is a powerful tool for new material exploration. Some new combinatorial technologies, such as combinatorial laser molecular beam epitaxy (CLMBE) and combinatorial pulsed laser deposition (CPLD), were introduced in the paper. La1-xCexVO3 (0≤x≤1) composition-spread films were fabricated successfully by CPLD, while their thermoelectric properties and structures were evaluated by the multi-channel thermoelectric measurement system and concurrent X-ray analysis respectively. Combinatorial technologies are proving to be an efficient, low-cost tool in synthesis and characterization of thermoelectric composition-spread films.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ngo Dinh Vu ◽  
Hang Thi Tran ◽  
Toan Duy Nguyen

Polypropylene (PP) based green composites containing 10, 20, 30, 40 and 50 wt% of cellulose fibers (CFs) which were extracted from rice straw were successfully prepared by melt blend method. The CFs washed with H2O2 after alkaline extraction showed lower water absorption than that not washed with H2O2. The thermal, mechanical, and biodegradation properties of composites were also investigated. The 10% weight loss temperature of the composites was decreased with the increasing CFs content, but all the composites showed over 300°C. Young’s modulus and flexural properties of PP were improved by blending PP with CFs. The pure PP showed no degradability, but the PP/CFs composites degraded from about 3 to 23 wt%, depending on CFs content after being buried in soil for 50 days. These PP/CFs composites with high thermal, mechanical properties and biodegradability may be useful as green composite materials for various environmental fields.


Buildings ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 60 ◽  
Author(s):  
Romina del Rey ◽  
Jesús Alba ◽  
Juan Rodríguez ◽  
Laura Bertó

In order to assess the airborne sound insulation of a new material or building solution, access to standardized laboratories, large and expensive facilities, and a sample area of at least 10 m2 are required. At the research and development stages of new sustainable acoustic materials for construction, it is not easy to make large sample areas available. Moreover, the financial investment in acoustic testing of materials during the research stage in standardized laboratories is excessive. In this work, the assessment of the airborne sound insulation of multi-layer partitions designed with new sustainable materials is presented. The assessed solutions are formed by green composite fiber boards as lightweight elements and a new material designed from sheep wool as absorbent material. The results of these 100% recyclable solutions are compared with lightweight element based solutions, which are commonly used for acoustic insulation. Characterization of those new sustainable solutions for building is leveraged in a reduced sized transmission chamber. The design, construction, and validation of this kind of laboratory are provided. This laboratory enables the assessment of the airborne sound insulation of a material in its research stage.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1047 ◽  
Author(s):  
Javier Conesa-Egea ◽  
Alberto Moreno-Vázquez ◽  
Vanesa Fernández-Moreira ◽  
Yolanda Ballesteros ◽  
Milagros Castellanos ◽  
...  

Herein is presented the preparation and characterization of a composite material obtained by the combination of nanosheets of a coordination polymer (CP) based on the copper(I)-I double chain with response to temperature and pressure with polylactic acid (PLA) as biodegradable organic matrix. The new films of composite materials are generated using a simple and low-cost method and can be created with long lateral dimensions and thicknesses ranging from a few microns to a few nanometers. Studies show that the new material maintains the optical response versus the temperature, while the elasticity and flexibility of the PLA totally quenches the response to pressure previously observed for the CP. This new material can act as a reversible sensor at low temperatures, thanks to the flexibility of the copper(I)-iodine chain that conforms the CP. The addition of CP to the PLA matrix reduces the elastic modulus and ultimate elongation of the organic matrix, although it does not reduce its tensile strength.


Author(s):  
X. Lin ◽  
X. K. Wang ◽  
V. P. Dravid ◽  
J. B. Ketterson ◽  
R. P. H. Chang

For small curvatures of a graphitic sheet, carbon atoms can maintain their preferred sp2 bonding while allowing the sheet to have various three-dimensional geometries, which may have exotic structural and electronic properties. In addition the fivefold rings will lead to a positive Gaussian curvature in the hexagonal network, and the sevenfold rings cause a negative one. By combining these sevenfold and fivefold rings with sixfold rings, it is possible to construct complicated carbon sp2 networks. Because it is much easier to introduce pentagons and heptagons into the single-layer hexagonal network than into the multilayer network, the complicated morphologies would be more common in the single-layer graphite structures. In this contribution, we report the observation and characterization of a new material of monolayer graphitic structure by electron diffraction, HREM, EELS.The synthesis process used in this study is reported early. We utilized a composite anode of graphite and copper for arc evaporation in helium.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1497 ◽  
Author(s):  
Isabel Santamaría Vicario ◽  
Lourdes Alameda Cuenca-Romero ◽  
Sara Gutiérrez González ◽  
Verónica Calderón Carpintero ◽  
Ángel Rodríguez Saiz

The properties and the behaviour of plaster mortars designed with Polyurethane Foam Waste (PFW) are studied in this investigation. A characterization of the mixtures is completed, in accordance with the technical specifications of European Norms. The incorporation of polyurethane waste foam can yield porous and lighter mortars, with better resistance to water-vapour permeability, although with weaker mechanical strength and higher levels of absorbency. Nevertheless, suitable mechanical strengths were achieved, resulting in a new material that is compliant with the requirements of the construction industry. The use of PFW in the the manufacture of gypsum mortars for construction reduces the consumption of natural resources and, at the same time, recovers an industrial waste that is otherwise difficult to recycle.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 140
Author(s):  
Lichen Liu ◽  
Ziping Cao ◽  
Min Chen ◽  
Jun Jiang

This paper reports the fabrication and characterization of (Bi0.48Sb1.52)Te3 thick films using a tape casting process on glass substrates. A slurry of thermoelectric (Bi0.48Sb1.52)Te3 was developed and cured thick films were annealed in a vacuum chamber at 500–600 °C. The microstructure of these films was analyzed, and the Seebeck coefficient and electric conductivity were tested. It was found that the subsequent annealing process must be carefully designed to achieve good thermoelectric properties of these samples. Conductive films were obtained after annealing and led to acceptable thermoelectric performance. While the properties of these initial materials are not at the level of bulk materials, this work demonstrates that the low-cost tape casting technology is promising for fabricating thermoelectric modules for energy conversion.


Sign in / Sign up

Export Citation Format

Share Document